برق، الکترونیک، الکتروتکنیک، مکاترونیک، پزشکی، کشاورزی

برق، الکترونیک، الکتروتکنیک، مکاترونیک، پزشکی، کشاورزی و

برق، الکترونیک، الکتروتکنیک، مکاترونیک، پزشکی، کشاورزی

برق، الکترونیک، الکتروتکنیک، مکاترونیک، پزشکی، کشاورزی و

داده هایی در مورد برق، الکترونیک، الکتروتکنیک، مکاترونیک، پزشکی، کشاورزی و

تبلیغات
آخرین نظرات

۳۲ مطلب با موضوع «برق الکترونیک رباتیک :: اپ امپ، بافر و منابع تغذیه» ثبت شده است

آماده سازی سیگنال، تقویت،تضعیف، فیلتر

ShahBaz | چهارشنبه, ۱۲ فروردين ۱۳۹۴، ۱۰:۱۷ ق.ظ
آماده سازی سیگنال، تقویت،تضعیف، فیلتر
نویسنده: مسئول فنی در 
۱۰ اردیبهشت ۱۳۹۳
[ آخرین به روزرسانی در ۱۴ اردیبهشت ۱۳۹۳ ]

Signal Conditioning       ( در حال تکمیل )

خروجی یک سنسور را نمی توان به طور مستقیم، به مبدل آنالوگ به دیجیتال میکروکنترلر داد. قبل از آن اگر سیگنال ضعیف است، باید آنرا تقویت کنیم. آگر دامنه آن خیلی زیاد است، آنرا تضعیف کنیم. اگر شامل مقادیر منفی است، به آن یک مقدار DC اضافه کنیم، تا در محدوده مثبت قرار گیرد. اگر نویز دارد، آن را فیلتر کنیم. اگر پهنای باند سیگنال زیاد است و قادر به پردازش فرکانس های بالا نیستیم، برای اجتناب از تداخل، سیگنال را فیلتر کنیم.  اگر می خواهیم بخش سنسورها از بخش پردازش جدا باشد، سیگنال را باید ایزوله کنیم. به این مرحله Signal Conditioning به معنی آماده سازی سیگنال می گوییم. ( اگر ترجمه بهتری پیدا کردید به ما اطلاع دهید.)

1-      تقویت ، تضعیف و تغییر سطح سیگنال 

ما برای پردازش دیجیتال سیگنال ها،  باید سیگنال را به کمک مبدل آنالوگ به دیجیتال، تبدیل به دیجیتال کنیم. از طرف دیگر برای اینکه از محدوده مبدل A2D به طور کامل استفاده کنیم، تغییرات سیگنال ما باید در بازه ورودی مجاز A2D باشد. اما غالب خروجی سنسورها و سیگنال ها در این نحدوده نیستند. برای نمونه خروجی سنسورها در حد میلی ولت هستند، در حالیکه محدوده A2D در حد 0 تا 5 ولت است. ( البته با کنترل Vref می توان محدوده ورودی A2D را تغییر داد.) پس لازم است که سیگنال را تقویت کنیم.
از طرف دیگر در مواردی ممکن است سیگنال ورودی ما بزرگ باشد، در این صورت باید آن را تضعیف و به محدوده مجاز ورودی A2D برسانیم. برای مثال اگر شما بخواهید، ولتاژ برق شهر را اندازه گیری نمایید، باید آن را تضعیف کنید.
در بعضی موارد سیگنال شما متناوب و دارای بخش منفی است، در حالی که غالب A2D ها محدوده ورودی آن ها مثبت است و بخش منفی سیگنال را معادل صفر می گیرند، پس باید به سیگنال ورودی مقدار DC اضافه کنید، تا سیگنال به محدوده مثبت شیفت پیدا کند.
خروجی یک سنسور را نمی توان به طور مستقیم، به مبدل آنالوگ به دیجیتال میکروکنترلر داد. قبل از آن اگر سیگنال ضعیف است، باید آنرا تقویت کنیم. آگر دامنه آن خیلی زیاد است، آنرا تضعیف کنیم. اگر شامل مقادیر منفی است، به آن یک مقدار DC اضافه کنیم، تا در محدوده مثبت قرار گیرد. اگر نویز دارد، آن را فیلتر کنیم. اگر پهنای باند سیگنال زیاد است و قادر به پردازش فرکانس های بالا نیستیم، برای اجتناب از تداخل، سیگنال را فیلتر کنیم.  اگر می خواهیم بخش سنسورها از بخش پردازش جدا باشد، سیگنال را باید ایزوله کنیم. به این مرحله Signal Conditioning به معنی آماده سازی سیگنال می گوییم. ( اگر ترجمه بهتری پیدا کردید به ما اطلاع دهید.)
operational Amplifier
این کارها و خیلی کارهای دیگر به کمک تقویت کننده عملیاتی (Operational Amplifier OpAmp ) انجام می شود.
نماد و یک نمونه  OpAmp در شکل زیر آمده است. OpAmp  دارای دو ورودی مثبت و منفی است. که تفاضل آن ها تقویت می شود. هر OpAmp  دارای امپدانس ورودی Zin  ، امپدانس خروجی Zout  و بهره A می باشد.



operational Amplifierیک OpAmp ایده آل دارای مشخصات زیر است:
-          بهره بی نهایت
-          امپدانس ورودی بی نهایت
-          امپدانس خروجی صفر
-          پهنای باند بی نهایت
همانطور که می دانید، هیچ چیز ایده آلی در دنیا وجود ندارد، پس OpAmp هم از این قاعده جدا نیست.
OpAmp واقعی دارای مشخصات زیر است، البته با توجه به انواع مختلف OpAmp این مقادیر در OpAmp های مختلف متفاوت است:
-          بهره خیلی زیاد
-          امپدانس ورودی بالا
-          امپدانس خروجی کم
-          پهنای باند محدود
برای نمونه پارامترهای چند نمونه OpAmp را می آوریم:

 بهره بی نهایت یا زیاد کاربردی ندارد، آنچه مهم است داشتن یک مدار با بهره معین است. برای اینکار با گرفتن فیدبک از خروجی مدارهای مختلف با بهره قابل تنظیم می سازند.
دو نمونه تقویت کننده وارونساز و ناوارونساز در شکل زیر آمده است. بهره هر کدام از آن ها مشخص و توسط مقاومت های Rin و Rf تعیین می شود.
همانطور که می بینید در تقویت کننده وارونساز بهره مدار کمتر و یا بیشتر از یک می تواند باشد. اما بهره تقویت کننده ناوارونساز همواره بیش از یک است.
Inverting and non inverting amplifier
 تقویت کننده تفاضلی : در این حالت همانطور که در شکل زیر می بینید، تفاضل دو سیگنال V2 و V1 یعنی مقدار V2-V1 با بهره R3/R1 به خروجی منتقل می شود. 
Differential amplifier
مدار جمع کننده با OpAmp  : در این حالت می توان دو یا چند سیگنال مختلف را با هم جمع کرد.
Summing amplifier
از مدار بالا برای جمع کردن سیگنال با یک مقدار ثابت نیز می توان استفاده کرد.

در شکل بالا مقاومت های ورودی یکسان هستند، پس تمام سیگنال ها با بهره Rf/Rin به خروجی منتقل می شوند. اگر مقاومت های ورودی را متفاوت کنیم، ورودی ها با بهره های متفاوت به خروجی منتقل خواهند شد. در شکل زیر ورودی اول با بهره Rf/R1  و ورودی دوم با بهره Rf/R2 و ورودی سوم با بهره Rf/R3 و ... به خروجی منتقل می شوند. با انتخاب مناسب مقاومت ها مانند شکل زیر، از جمع کننده به عنوان مبدل دیجیتال به آنالوگ می توان استفاده کرد.
Digital to analog with op amp
شیفت دادن سیگنال : علاوه بر مدار قبل از مدار زیر نیز می توان برای جمع کردن سیگنال با یک مقدار خاص استفاده کرد. در این مدار با پتانسیومتر مقدار شیفت سیگنال تنظیم می شود. خازن برای تثبیت این ولتاژ است. بهره کل را نیز می توان با انتخاب مناسب R1 و R2 بدست آورد.
op amp level Shifting
تقویت کننده ابزار دقیق :

تقویت کننده دقیق یک تقویت کننده تفاضلی با امپدانس ورودی بالا است، که برای تقویت سیگنال های ضعیف به کار می رود. همانطور که در شکل می بینید، این تقویت کننده دارای دو دنبال کننده ولتاژ در ورودی است. نقش این دنبال کننده های ولتاژ بافر کردن V1 و V2 است. قسمت خروجی نیز یک تقویت کننده تفاضلی است.  تقویت کننده دقیق ضمن داشتن امپدانس ورودی بالا، امکان تقویت سیگنال ها به صورت تفاضلی را داراست.
Instrumentation Amplifier

 

جداسازی / ایزولاسیون:

یک سیستم دارای بخش های مختلف است. گاهی لازم است بخش های مختلف از یکدیگر جدا یا ایزوله شوند.  سنسورها در یک محیط صنعتی با ولتاژ پرخطر، نویز زیاد، پتانسیل زمین مواج  اگر باشند، باید سیگنالهای خروجی آن ها را از مدارهای اندازه گیری و مونیتورینگ جدا کنیم. ولتاژ بیش از 30Vrms , 42.4 Vpk, 60 VDC  مخاطره انگیز محسوب می شوند.

فواید جداسازی :
-          حفاظت از انسان، تجهیزات گران قیمت و داده ها از ولتاژ های گذرا
-          افزایش مصونیت از نویز
-          افزایش رد ولتاژهای مشترک
-          حذف حلقه زمین

در جداسازی لازم است که سیگنال بدون تماس الکتریکی مستقیم به بخش دیگر منتقل شود. روش های مختلف جداسازی در شکل زیر آمده است.

جداسازی نوری :

در این روش سیگنال اولیه LED را فعال می کند و نور ارسالی از LED توسط آشکارساز نوری دریافت و به شکل سیگنال اولیه تبدیل می شود. جداسازی نوری یکی از روش های پر کاربرد امروزی است. یکی از مزایای آن مصونیت در مقابل نویز های الکتریکی و مغناطیسی است. اشکال جداسازی نوری تلفات توان است. سرعت انتقال بستگی به نوع جداساز نوری دارد، که باید به آن در موقع استفاده دقت شود.
ایزولاتور نوری

جداسازی القایی :

در این روش تغییر جریان سیگنال در سیم پیچ اولیه، به سیم پیچ دوم القا می شود. جداسازی القایی، می تواند تحت تاثیر میدان های مغناطیس مجاور قرار گیرد. از جداساز القایی برای انتقال سیگنال های DC نمی توان استفاده کرد.
ایزولاتور القای مغناطیسی
امروزه قطعات زیادی در دسترس ما هستند، که روش های مختلف جداسازی در درونشان پیاده سازی شده است. در دو شکل زیر دو مدل جداسازی را می بینید. در شکل بالا جداسازی در قسمت آنالوگ و در شکل پایین جداسازی در قسمت دیجیتال انجام گرفته است.

ایزولاسیون سیگنال

فیلتر کردن :
فیلتر برای گزینش استفاده می شود. یک فیلتر یا صافی چای، اجازه عبور چای را می دهد، اما جلوی تفاله را می گیرد. باید ببینیم یک فیلتر با سیگنال ها چه می کند. همانطور که از تبدیل فوریه می دانید، غالب سیگنال ها از مجموعه ای از سیگنالهای سینوسی با فرکانس های مختلف ساخته می شوند و یا به بیان دیگر هر سیگنال مجموعه ای از سیگنالهای سینوسی را در دل خود دارد. فیلتر ها بسته به نوعشان اجازه عبور بخشی از این فرکانس ها را می دهند و جلوی تعدادی از فرکانس ها را می گیرند.


ضرورت فیلتر کردن سیگنالها :
- حذف نویز و فرکانس های ناخواسته : گاهی سیگنال اصلی با نویز همراه است، این نویز از محیط اطراف به سیگنال اضافه می شود. این اضافه شدن ممکن است از طریق امواج الکترومغناطیسی و یا ارتباط مسی با تجهیزات اطراف باشد. برای مثال نویز منابع تغذیه سوئیچینگ، یا نویز 50Hz برق شهر یک منبع فرکانس های ناخواسته است. اگر سیگنال های تولیدی ما دقیق نباشند، منشا فرکانس های ناخواسته و یا هارمونیک های سیگنال اصلی می شوند. ما با قرار دادن فیلتر مناسب فرکانسهای ناخواسته را حذف می کنیم.

جلوگیری از تداخل :
برای پردازش دیجیتال سیگنال ها لازم است، از سیگنال نمونه برداری شود. فرکانس نمونه برداری طبق قانون نایکوئیست باید حداقل دو برابر بالاترین فرکانس موجود در سیگنال باشد. اگر کمتر از این فرکانس از سیگنال نمونه برداری شود، تذاخل (aliasing) رخ می دهد. تداخل باعث اشتباه در برداشت سیگنال ورودی شده و نتیج بعدی با اشتباه همراه خواهند بود.
در شکل a طیف سیگنال پیوسته آمده است. وقتی از سیگنال پیوسته با فرکانس fs نمونه برداری کنید، طیف سیگنال گسسته ( نمونه برداری شده ) به صورت متناوب و در مضارب fs   تکرار می شود. ( شکل b )
همانطور که در شکل b می بینید، چنانچه فرکانس نمونه برداری از دوبرابر پهنای باند یعنی B بیشتر باشد تداخلی رخ نمی دهد. اما چنانچه فرکانس نمونه برداری از دو برابر پهنای باند کمتر باشد، مانند شکل c تداخل رخ می دهد.
aliasing
در صورتی که تداخل نداشته باشیم، با فیلتر کردن طیف سیگنال گسسته می توانیم، طیف سیگنال پیوسته را استخراج و آن را بازسازی کنیم. اما در صورت تداخل این کار میسر نیست و خطا دارد. ( برای مطالعه بیشتر به کتاب سیگنال و سیستم اپنهایم فصل مراجعه نمایید. )
برای جلوگیری از تداخل می توان پهنای باند سیگنال را با فیلتر مناسب محدود و با اینکار حداکثر فرکانس موجود در سیگنال را کاهش داد و پس از آن از سیگنال نمونه برداری کرد. توجه داشته باشید، کاهش دادن پهنای باند یک سیگنال از کیفیت سیگنال می کاهد، اما در خیلی از موارد پاسخگوی نیاز ما است.
انواع فیلتر :
فیلتر ها را بر اساس محدوده از فرکانس ها که از خود عبور می دهند، نام گذاری می کنند. اگر فرکانس های پایین را از خود عبور دهند و مانع عبور فرکانس های بالا شوند، به آن فیلتر پایین گذر می گویند. اگر فرکانس های بالا عبور دهند، به آن فیلتر بالا گذر می گویند. اگر فرکانسهای میانی را از خود عبور دهند و فرکانس های پایین و بالا را از خود عبور ندهند، به آن فیلتر میان گذر می گویند. اگر فرکانس های میانی را عبور ندهند و فرکانس های بالا و پایین را از خود عبور دهند، به آن فیلتر میان نگذر می گویند.توجه داشته باشید که فرکانس بالا، پایین و میانی نسبی است.
low pass high pass filter
در شکل زیر یک فیلتر پایین گذر، با جزئیات آمده است. همانطور که می بینید، محورها به صورت لگاریتمی نشان داده شده اند. با لگاریتمی بودن محور افقی، که مبین فرکانس است ما عملکرد فیلتر را در محدوده بیشتری می توانیم نشان دهیم. علاوه بر آن فرکانس های پایین بازتر نشان داده می شوند.
محور عمودی بهره را بر حسب دسیبل  dB نشان می دهد. برای تبدیل به dB همانطور که در رابطه آن می بینید، باید از آن لگاریتم گرفته و در 20 ضرب کنیم.
بهره واحد بر حسب دسیبل برابر 20 log 1 = 0 db می شود. در شکل زیر 3dB - نیز مهم است. به راستی 3dB-  متناظر با چه بهره ای است. بهره برابر آنتی لگاریتم 3/20 - می شود، که برابر 0.707 است.
وقتی دامنه سیگنال خروجی به 0.707  مقدار اولیه کاهش بکند، این نقطه را فرکانس کناره Corner Frequency و یا فرکانس قطع Cut Off Frequency می گویند. در واقع وقتی تضعیف سیگنال خروجی بیش از 0.707 شود، می گویند فیلتر سیگنال را قطع می کند و از خود عبور نمی دهد و مرز فیلتر را مشخص می کند.
نکته دیگر در این شکل شیب ناحیه قطع است، در حالت ایده آل باید فرکانس های بیشتر از fc عبور نکنند، اما فیلترهای واقعی اینگونه نیستند، بلکه فرکانسهای بالاتر از fc با شیب 20dB/Decade -  تضعیف می شوند. میزان شیب تضعیف به درجه فیلتر بستگی دارد، برای شیب تندتر باید از فیلترهای با درجه بالاتر استفاده کنیم.
low pass filter
طراحی فیلتر :

فیلترهای فعال را می توان با سه پاسخ باتروث، چه بی چف یا بسل ساخت. پاسخ این فیلترها در شکل زیر آمده است. فیلتر باترورث در باند گذر صاف و شیب تضعیف 20dB/dec -  است، اما فاز آن خطی نیست. فیلتر بسل تضعیف آن در باند قطع کمتر از باترورث است، اما فاز آن خطی است. فیلتر چه بی چف در باند گذر صاف نیست و مزیت آن شیب تضعیف بیش از 20dB/dec در باند قطع است.
butterworth bessel filter
پس از انتخاب نوع فیلتر به سراغ درجه فیلتر می رویم. درجه فیلتر همانطور که گفتیم، شیب تضعیف در باند قطع را مشخص می کند. شکل زیر به خوبی نشان دهنده درجه فیلتر است.
درجه فیلتر
پس از آن باید مدل فیلتر را انتخاب کنیم. مدل فیلتر در واقع نحوه قرار گرفتن قطعات الکترونیکی یک فیلتر را نشان می دهد. "سالن کی" یکی از مدل های متداول فیلتر است.
 در زیر دو مدل فیلتر پایین گذر و بالا گذر آمده است.
Sallen key filter

برای تعیین مقادیر خازن ها و مقاومت ها، با توجه به نوع فیلتر و درجه فیلتر از جدول زیر مقادیر K1  و K2را برای هر طبقه استخراج می کنیم و با توجه به فرکانس قطع مورد نظر مقادیر خازن و مقاومت را بدست می آوریم. توجه داشته باشید، فیلترهای درجه بالا را از سری کردن فیلتر های درجه دو می سازند. برای مثال فیلتر درجه 6 را با سه طبقه فیلتر درجه 2 می سازند. مقادیر K1  و K2 سه طبق با هم فرق می کند.  

Sallen key Table

مثال: یک فیلتر درجه 4 باترورث با فرکانس قطع 10KHz طراحی کنید.

با توجه به جدول بالا باید دو طبقه فیلتر درجه دو استفاده کنیم. همانطور که در جدول می بینید k1 و k2  طبقه اول به ترتیب 1.082 و 0.924 هستند و k1 و k2  طبقه دوم 2.613 و 0.383 است.

برای طبقه اول داریم :

ω= 2 π f0 = 62.83 rad/sec

RC1 = k/ ω0 = 1.722 × 10-5

RC2 = k/ ω0 = 1.471 × 10-5

حال اگر R=10kΩ بگیریم مقادیر C1 = 1722 pF و C2= 1471 می شود. به طریق مشابه مقادیر طبقه دوم را می توان بدست آورد. با انتخاب R=10kΩ برای طبق دوم، مقادیر C1=4159pF و C2=610pF می شود. 

مراحل طراحی یک فیلتر:

1-      انتخاب نوع فیلتر ( باترورث ، بسل، چه بی چف و...) با توجه دامنه و فاز خروجی مورد نظر

2-      انتخاب درجه فیلتر با توجه به شیب ناحیه قطع

3-      انتخاب مدل فیلتر سالن-کی ،

4-      تعیین مقادیر خازن ها و مقاومت ها

5-      بستن مدار و ارزیابی عملکرد و تنظیم دقیق فیلتر (fine tuninig)


منبع: http://www.lclass.ir

  • ShahBaz

منابع تغذیه سوئیچینگ

ShahBaz | سه شنبه, ۲۶ اسفند ۱۳۹۳، ۱۱:۲۸ ب.ظ

منابع تغذیه سوئیچینگ

در طراحی منبع تغذیه سوئیچینگ اگر ورودی اصلی ولتاژ متناوب باشد، ابتدا از یک طبقه یکسوکننده عبور کرده و یک ولتاژ مستقیم رگوله نشده ایجاد میشود. این ولتاژ مستقیم به خازنهای فیلترینگ بزرگ متصل میشود. جریان کشیده شده توسط این یکسوکننده از ورودی ولتاژ متناوب باعث ایجاد پالسهای جریان در اطراف پیک ولتاژ متناوب میشود. این پالسهای کوچک مولد فرکانسهای بالا بوده و کاهش فاکتور توان را بهمراه دارند. تکنیک پاور فکتور کورکشن برای مقابله ایجاد شده است. مدار پاور فکتور کورکشن جریان مصرفی یکسوکننده را شبیه به شکل موج سینوسی نگاه داشته و در نتیجه فاکتور توان در برق ورودی متناوب اصلاح و نزدیک به 1،00 باقی میماند

محدوده ولتاژ متناوب ورودی توسط یک سوئیچ در دو حالت 115 و 230 ولت انتخاب میشود . در حالت 115 ولت یک مدار دو برابر کننده ولتاژ در طبقه ورودی اضافه میشود. در برخی مدلها محدوده ولتاژ متناوب ورودی یونیورسال بوده و حداقل100  تا 240 ولت را پشتیبانی میکنند. در یک منبع تغذیه با ورودی ولتاژ مستقیم به مرحله یکسو کننده احیتاجی نیست

در مرحله اینورتر، مقدار ولتاژ مستقیم تولید شده در مرحله قبل، دوباره به ولتاژ متناوب تبدیل میشود. فرکانس خروجی اینورتر بیش از 20 کیلوهرتز (خارج از محدوده شنوایی) انتخاب میشود. عمل سوئیچ معمولاً به کمک چند طبقه ماسفت  جهت رسیدن به بهره بالا انجام میشود. در مرحله بعد ترانس با تعداد دورهای پیچشی کم قرار دارد. به دلیل فرکانس بالا دور سیم پیچ ترانس کم میشود و بسته به نیاز ترانس افزاینده یا کاهنده است. در مرحله نهایی هم یک طبقه یکسوکننده و فیلتر وجود دارد که وظیفه ی آن ساختن خروجی ولتاژ مستقیم در محدوده معین و مشخصات مناسب است

  • ShahBaz

تفاوت منبع تغذیه خطی و سوئیچینگ

ShahBaz | سه شنبه, ۲۶ اسفند ۱۳۹۳، ۱۱:۲۴ ب.ظ

تفاوت منبع تغذیه خطی و سوئیچینگ

برای ثابت نگه داشتن ولتاژ مستقیم در خروجی یک منبع تغذیه، دو روش رگولاسیون خطی و رگولاسیون به روش سوئیچینگ رایج میباشد. منبع تغذیه سوئیچینگ یک واحد تغذیه توان است که به روش سوئیچینگ عمل رگولاسیون را انجام میدهد. در روش رگولاتور خطی از ترانس و المانهای یکسو کننده جریان و فیلتر استفاده میشود. تلفات بالا و بازدهی پائین و عدم دسترسی به رگولاسیون دقیق و کیفیت دلخواه در خروجی، مشکلات منبع تغذیه خطی میباشند. سه عامل اصلی در تفاوت این دو روش عبارتند از فرکانس کار ترانسها در روش خطی 50 تا 60 هرتز است. ترانسهای فرکانس پایین، اندازه و حجم بزرگی دارند. در روش سوئیچینگ به دلیل استفاده از فرکانس بالای 50 تا 200 کیلوهرتز، حجم و وزن ترانسها به میزان قابل توجهی کاهش یافته و درنتیجه اندازه منبع تغذیه سوئیچینگ کوچکتر است

راندمان یا بازده توان در روش سوئیچینگ بسیار بیشتر از روش خطی است. یک منبع خطی با تلف کردن توان، خروجی را رگوله یا یکسو میکند ولی در روش سوئیچینگ با تغییر میزان دوره سیکل سوئیچ ، ولتاژ و جریان خروجی کنترل میشود. با یک طراحی خوب در روش سوئیچینگ میتوان به حدود 90درصد بازدهی دست یافت

در طراحی منابع تغذیه سوئیچنگ، بدلیل وجود فرکانس بالا، بحث نویز و اثرهای ناخواسته الکترومغناطیسی بسیار مهم بوده و برای حذف آنها از فیلتر ای.ام.آی و اتصالات آر.اف استفاده میشود. طراحی منبع تغذیه خطی بسیار ساده بوده و اثرات نویز در خروجی بسیار کمتر است


منابع تغذیه سوئیچینگ
شکل فوق بلوک دیاگرام منبع تغذیه سوئیچینگ را نشان میدهد. در طراحی منبع تغذیه سوئیچینگ اگر ورودی اصلی ولتاژ متناوب باشد، ابتدا از یک طبقه یکسوکننده عبور کرده و یک ولتاژ مستقیم رگوله نشده ایجاد میشود. این ولتاژ مستقیم به خازنهای فیلترینگ بزرگ متصل میشود. جریان کشیده شده توسط این یکسوکننده از ورودی ولتاژ متناوب باعث ایجاد پالسهای جریان در اطراف پیک ولتاژ متناوب میشود.

این پالسهای کوچک مولد فرکانسهای بالا بوده و کاهش فاکتور توان را بهمراه دارند. تکنیک پاور فکتور کورکشن برای مقابله ایجاد شده است. مدار پاور فکتور کورکشن جریان مصرفی یکسوکننده را شبیه به شکل موج سینوسی نگاه داشته و در نتیجه فاکتور توان در برق ورودی متناوب اصلاح و نزدیک به 1،00 باقی میماند

محدوده ولتاژ متناوب ورودی توسط یک سوئیچ در دو حالت 115 و 230 ولت انتخاب میشود . در حالت 115 ولت یک مدار دو برابر کننده ولتاژ در طبقه ورودی اضافه میشود. در برخی مدلها محدوده ولتاژ متناوب ورودی یونیورسال بوده و حداقل100 تا 240 ولت را پشتیبانی میکنند. در یک منبع تغذیه با ورودی ولتاژ مستقیم به مرحله یکسو کننده احیتاجی نیست

در مرحله اینورتر، مقدار ولتاژ مستقیم تولید شده در مرحله قبل، دوباره به ولتاژ متناوب تبدیل میشود. فرکانس خروجی اینورتر بیش از 20 کیلوهرتز (خارج از محدوده شنوایی) انتخاب میشود. عمل سوئیچ معمولاً به کمک چند طبقه ماسفت جهت رسیدن به بهره بالا انجام میشود. در مرحله بعد ترانس با تعداد دورهای پیچشی کم قرار دارد. 

به دلیل فرکانس بالا دور سیم پیچ ترانس کم میشود و بسته به نیاز ترانس افزاینده یا کاهنده است. در مرحله نهایی هم یک طبقه یکسوکننده و فیلتر وجود دارد که وظیفه ی آن ساختن خروجی ولتاژ مستقیم در محدوده معین و مشخصات مناسب است



آشنایی با اجزاء فیزیکی منبع تغذیه


نویسنده : مجتبی کاربه - ساعت ۸:٠٢ ‎ب.ظ روز ۱٩ اسفند ۱۳٩٠
 

برای ثابت نگه داشتن ولتاژ مستقیم در خروجی یک منبع تغذیه، دو روش رگولاسیون خطی و رگولاسیون به روش سوئیچینگ رایج میباشد. منبع تغذیه سوئیچینگ یک واحد تغذیه توان است که به روش سوئیچینگ عمل رگولاسیون را انجام میدهد. در روش رگولاتور خطی از ترانس و المانهای یکسو کننده جریان و فیلتر استفاده میشود. تلفات بالا و بازدهی پائین و عدم دسترسی به رگولاسیون دقیق و کیفیت دلخواه در خروجی، مشکلات منبع تغذیه خطی میباشند.


سه عامل اصلی در تفاوت این دو روش عبارتند از فرکانس کار ترانسها در روش خطی 50 تا 60 هرتز است. ترانسهای فرکانس پایین، اندازه و حجم بزرگی دارند. در روش سوئیچینگ به دلیل استفاده از فرکانس بالای 50 تا 200 کیلوهرتز، حجم و وزن ترانسها به میزان قابل توجهی کاهش یافته و درنتیجه اندازه منبع تغذیه سوئیچینگ کوچکتر است.

در این منابع ترانزیستوری که نقش کلید را به عهده دارد با فرکانسی حدود 50 کیلو هرتز یا بیشتر بین وضعیت قطع و اشباع در نوسان است که این خود سبب کاهش تلفات ترانزیستور می گردد .نسبت ولتاژ خروجی به ورودی را می توان با تغییر نسبت زمان روشن بودن به زمان خاموش بودن ترانزیستور تعیین کرد . در نقطه مقابل, در یک منبع تغذیه خطی برای دستیابی به ولتاژ دلخواه باید قسمتی از ولتاز ورودی روی ترانزیستور افت کرده و تلف شود .بازده بالا مزیت اصلی یک منبع تغذیه سوئیچینگ است . هنگامی که بازده بالاتر, ابعاد کوچک تر و وزن کم تر مد نظر باشد منابع تغذیه سوئیچینگ جایگزین منابع تغذیه خطی می شوند . منابع تغذیه سوئیچینگ پیچیده تر هستند و اگر جریان ورودی به آنها به خوبی فیلتر نشود می تواند نویز ایجاد کند.

 

راندمان یا بازده توان در روش سوئیچینگ بسیار بیشتر از روش خطی است. یک منبع خطی با تلف کردن توان، خروجی را رگوله یا یکسو میکند ولی در روش سوئیچینگ با تغییر میزان دوره سیکل سوئیچ ، ولتاژ و جریان خروجی کنترل میشود. با یک طراحی خوب در روش سوئیچینگ میتوان به حدود 90درصد بازدهی دست یافت

در طراحی منابع تغذیه سوئیچنگ، بدلیل وجود فرکانس بالا، بحث نویز و اثرهای ناخواسته الکترومغناطیسی بسیار مهم بوده و برای حذف آنها از فیلتر ای.ام.آی و اتصالات آر.اف استفاده میشود.

وزن و ابعاد

منابع تغذیه خطی: در منابع با توان بالا هیت سینک (گرماگیر) مورد نیاز است که ابعاد منبع را افزایش میدهد و استفاده از ترانسفورمر های فرکانس پایین، به حجم و سنگینی دستگاه می افزاید.

منابع تغذیه سویچینگ: در بعضی منابع ممکن است از ترانسفورمر (یا سلف )استفاده شود که البته به دلیل فرکانس  کاری بالا‌، سنگینی و ابعاد ترانسفورمر زیاد نیست.

ولتاژ خروجی

منابع تغذیه خطی: در صورت استفاده از ترانسفورمر، می توان در خروجی به هر ولتاژ دلخواهی دست یافت در منابع خطی بدون ترانسفورمر ولتاژ خروجی از ورودی بیشتر نخواهد شد. در صورت عدم استفاده از رگولاتور، ولتاژ خروجی با بار تغییر می کند.

منابع تغذیه سویچینگ: هیچ گونه محدودیتی در ولتاژ خروجی نداریم .در بیشتر مدارات فقط ولتاژ شکست ترانزیستور می تواند محدود کننده باشد .  ولتاژخروجی با بار تغییری نمی کند.

کارایی، توان و گرمای تلفاتی

منابع تغذیه خطی:در منابع تغذیه دارای رگولاتور، بازده عمدتا بسته اختلاف بین ولتاژ ورودی و ولتاژخروجی از طریق تلف کردن توان اضافی به شکل حرارت ، تنظیم می گردد که این سبب می شود بازده منبع تغذیه به حدود ۳۰ تا ۴۰ درصد محدود شود .  در منابع تغذیه فاقد رگولاتور ، تلفات مسی و آهنی ترانسفورمر تنها عامل موثر بر کارایی منبع تغذیه است.

منابع تغذیه سویچینگ: ولتاژخروجی از طریق کنترل سیکل وظیفه (دیوتی سایکل) تنظیم می گردد . ترانزیستور ها یا کاملا روشن (حالت اشباع)هستند یا کاملا خاموش (حالت قطع) بنابراین تلفات اهمی بین ورودی و بار وجود  ندارد . حرارت ایجاد شده ناشی از ویژگیهای غیر آرمانی اجزای مدار و همچنین جریان حالت دایم مدار کنترل کننده می باشد.

مقایسه منابع تغذیه خطی و سویچئینگ

جریان هجومی وارده به منبع

منابع تغذیه خطی: در یک منبع تغذیه خطی در لحظه اتصال به برق شهری تا هنگامی که شار مغناطیسی ترانسفورمر  به یک حد پایدار برسد و خازن ها کاملا شارژ شوند جریان هجومی بالا است.

منابع تغذیه سویچینگ: جریان هجومی فوق العاده بالاست و فقط توسط امپدانس ورودی منبع تغذیه و مقاومت های سری با خازن محدود می گردد.

ضریب توان

منابع تغذیه خطی: در منابع تغذیه دارای رگولاتور ضریب توان پایین است زیرا جریان در قله (پیک) ولتاژ سینوسی از خط کشیده می شود.

منابع تغذیه سویچینگ: ازاعداد خیلی پایین تا متوسط در تغییر است زیرا در یک منبع تغذیه سویچینگ فاقد تصحیح ضریب توان، جریان در قله ولتاژ سینوسی از خط کشیده می شود.

نویز الکترونیکی در ترمینال های ورودی

منابع تغذیه خطیمی تواند اعوجاج هارمونیک ایجاد نماید ولی نویز فرکانس بالای آن ناچیز است

منابع تغذیه سویچینگ: منابع تغذیه سویچینگ ارزان قیمت می تواند نویز الکتریکی حاصل از سویچینگ وارد شبکه برق شهری نماید که این سبب بروز تداخل با سایر دستگهاهای صوتی و تصویری که به همان فاز وصل شده اند، میگردد . منابع تغذیه سویچینگ فاقد تصحیح ضریب توان نیز ممکن است اعوجاج هارمونیک ایجاد نمایند.

نویز آکوستیک

منابع تغذیه خطی: هوم بسیار ضعیفی ایجاد می کنند که عامل آن لرزش لایه های سیم پیچ ترانسفورمر می باشد.

منابع تغذیه سویچینگ: معمولا برای انسان قابل شنیدن نیست مگر اینکه منبع تغذیه دارای فن باشد، درست کار نکند یا اینکه فرکانس سویچینگ در محدوده قابل شنیدن باشد یا لایه های سیم پیچ ها در یکی از زیر هارمونیک های فرکانس کاری شروع به لرزش کند.

 

تداخل فرکانس رادیویی

منابع تغذیه خطی: در بار زیاد، دیودهای یکسوساز ممکن است تداخل فرکانس بالای ناچیزی ایجاد کنند.در کابل های فاقد حفاظ (شیلد) هوم القا می کنند که می تواند در فرکانس صوتی مشکل ساز باشد.

منابع تغذیه سویچینگ: به این دلیل که جریان بطور ناگهانی قطع و وصل می شود، این دسته از منابع مستعد ایجاد تداخل فرکانس رادیویی و الکترومغناطیسی می باشند . لذا برای کاهش تداخل باید از پالایه  (فیلتر)های تداخل الکترومغناطیسی و همچنین حفاظ های فرکانس رادیویی بهره جست.

بخش های یک منبع تغذیه سویچینگ

    EMI Filter   

این بخش از عناصر سلف و خازن تشکیل شده و وظیفه ی آن ممانعت از خروج فرکانس های اضافی (درمحدودهی کاری نویز حاصل از مدار سوئیچینگ) منبع تغذیه به بیرون و همچنین ممانعت از ورود فرکانس های اضافی (حاصل ازدوران موتور های الکتریکی و سیستمهای مولد حرارت و غیره) به داخل منبع تغذیه میباشد.

Input Capacitor

این قسمت از دو خازن الکترولیت با ظرفیت متناسب توان منبع تغذیه تشکیل شده و وظیفه آن کنترل سطح ولتاژ ورودی در هنگام کارکرد و همچنین ذخیره انرژی مورد نیاز مدار سوئیچینگ به هنگام وقفه های کوتاه انرژی میباشد.

Power Switching

این بخش معمولاً از دو ترانزیستور قدرت (ماسفت) تشکیل شده و وظیفه ی آن کنترل سطح ولتاژ خروجی را از طریق زمان روشن و خاموش شدن (سوئیچ) است.

Transformer

این بخش بنا به نوع طراحی، از دو تا سه ترانس (سوئیچینگ تی.آر، درایو تی.آر و غیره) تشکیل شده که علاوه بر ایزولاسیون ولتاژ مستقیم، وظیفه تغییر سطح ولتاژ را بر عهده دارند. طراحی این قسمت بسیار حساس است، زیرا اگر تعداد دور های اولیه و ثانویه متناسب با طراحی مدار پالز ویدث ماجولار نباشد، پایداری مدار و ضریب اطمینان نیمه هادی و در نهایت کارکرد منبع تغذیه با مشکل اساسی مواجه خواهد شد.

Output Diodes

این قسمت از دیودهای شاتکی، زنر و فست تشکیل شده و وظیفه آن یکسو سازی ولتاژ خروجی را در حالات عادی و قطع کامل جریان خروجی را در حالات خاص میباشد.

Heat Sink

این قسمت از آلیاژهای مختلف آلومینیوم و مس ساخته می شود و به واسطه تعبیه شیارهایی برروی آن جهت عبور جریان هوا، وظیفه انتقال دما از ترانزیستورهای سوئیچینگ و همچنین دیودهای شاتکی و  فست به محیط اطراف را بر عهده دارد.

Output Filter

این قسمت از چند خازن الکترولیت و سلف های چند لایه تشکیل شده است که وظیفه ذخیره انرژی در زمان روشن و ارائه آن در زمان خاموشی ترانزیستور را بر عهده دارد.

FAN

با وجود اینکه معمولاً مصرف کنندگان برای این قسمت اهمیتی قائل نمیشوند، انتقال حرارت در منابع تغذیه بسیار مهم و حیاتی بوده و رابطه مستقیمی با راندمان و طول عمر ان دارد. تهویه بهتر هوای گرم ازمحیط داخلی منبع تغذیه به فضای بیرون، کارکرد بهتر و عملکرد درازمدت تر منبع تغذیه را در پی دارد

PCB

برد اصلی منبع تغذیه میباشد که کلیه قطعات بر روی آن نصب میشوند. رعایت استانداردهای مختلف درساخت برد، از جمله تحمل حرارت بالا و عدم استفاده از مواد خطرناک برای محیط زیست ، باعث افزایش ضریب ایمنی کاربر میگردد.

IC Controller

 

 ۱-  کنترل خروجی، که با  تولید پالس های ویدث ماجولار ، فرآیند تغییر پنهانی یک رشته پالس بر اساس تغییرات سیگنال های دیگر و اعمال بازخورد ولتاژ و جریان و راه اندازی نرم در کلیه خروجیها را بر عهده دارد.

۲-  مونیتورینگ، که ازطریق یک شبکه تقسیم مقاومتی، کسری از ولتاژ خروجی به آی سی جهت مقایسه با یک ولتاژ مبنا، منتقل میشود و در صورت بروز هرگونه تغییر در خروجی دستور وقفه از طریق آی سی صادر میشود

۳-  نوسان ساز، که در فرکانس پایه کار میکند و موج مثلثی جهت استفاده در پالس ویدث ماجولار را تولید میکند

۴- راه اندازخروجی، که توان کافی را جهت بکارگیری در بارهای کم  و میانه، تولید میکند

۵- ولتاژ مبنا، که ولتاژ پایه را جهت مقایسه خروجیها و همچنین یک ولتاژ پایدار برای سایر بخشها تولید میکند

۶-مبدل خطا، که عرض پالس ولتاژ خروجی را متناسب با سطح ولتاژ، تنظیم مینماید

۷-پاور فکتور کورکشن، که وظیفه آن تصحیح هارمونیک های فرکانس خروجی و هدایت و کنترل آنها به مدار  پالس ویدث ماجولار است

 

 

مشخصات یک  فنی منبع تغذیه:

MTBF TEST :‌ مطابق با استاندارد طراحی مدار، کیفیت قطعات داخلی و دور فن به گونه ای باشد که باعث بالا رفتن عمر مفید منبع تغذیه گردد.

EMC TEST : مطابق با استاندارد ، منبع تغذیه دارای ضربه گیر ورودی و لاین فیلتر به همراه خازن های X,Y با علامت درج شده استاندارد باشد.

BURN IN TEST : حرارت قطعات داخلی از محدوده مجاز تعیین شده در استاندارد تجاوز نکرده و در صورت از کار افتادن فن ، منبع تغذیه به طور خودکار خاموش شود.

LOW NOISE : نویز به وجود آمده، از محدوده مجاز تعیین شده دراستاندارد تجاوز ننماید، که این مورد در کارایی رایانه و همچنین بالا رفتن عمر مفید قطعات متصل به منبع تغذیه تاثیر بسیار زیادی دارد.

SILENT PC : طراحی مدار به گونه ای باشدکه دوران فن ها متناسب با حرارت داخلی تغییر یابد. این مورد باعث پایین آمدن نویز صوتی و بالا رفتن عمر مفید فن می‌گردد.

HI-POT TEST : در حدود تعیین شده در استاندارد، در صورت افزایش ناگهانی ولتاژ در ورودی، منبع تغذیه دچار آسیب جدی نشود.

THERMINAL EARTH : مطابق با استاندارد، منبع تغذیه دارای ترمینال تخلیه بار الکتریکی و همچنین درج علامت مربوطه بر روی بدنه داخلی باشد.

PCB FIRE TEST : مطابق استاندارد آتش سوزی، برد اصلی منبع تغذیه دارای کلیه موارد و نکات ایمنی لحاظ شده در استاندارد آتش‌سوزی باشد.

HOLD UP TIME  : مدت زمانی که به طول می انجامد تا ولتاژ +V پس از وقفه انرژی در ورودی، از مرز 90% مقداراولیه خود پایین تر بیاید، مطابق با استاندارد باشد.

POWER GOOD TIME : مدت زمانی که به طول می انجامد تا ولتاژ +V پس از روشن شدن  منبع تغذیه، از مرز 95%  مقدار اولیه خود عبور کند، ‌مطابق  استاندارد باشد.

SHORT CIRCUIT PROTECTION : در صورت به وجود آمدن اتصال کوتاه در هر یک از شاخه‌های خروجی، منبع تغذیه به صورت خودکار خاموش شود.

OVERLOAD PROTECTION : در حدود تعیین شده در استاندارد، در صورت افزایش بار مصرفی خارج ازتوان حداکثر، منبع تغذیه به صورت خودکار خاموش شود.

OVER VOLTAGE PROTECTION : در حدود تعیین شده  استاندارد، در صورت افزایش ولتاژ در هر یک از شاخه های خروجی، منبع تغذیه به صورت خودکار خاموش شود.

UNDER VOLTAGE PROTECTION : در حدود تعیین شده استاندارد، در صورت کاهش ولتاژ در هر یک از شاخه های خروجی ،منبغ تغذیه به صورت خودکار خاموش شود.

OVER CURRENT PROTECTION : در حدود تعیین شده در استاندارد، در صورت اضافه بار خارج از توان بر روی هر یک از شاخه های خروجی، منبع تغذیه به صورت خودکار خاموش شود. 

POWER FACTOR CORRECTION : در حدود تعیین شده دراستاندارد، هارمونیک های فرکانس خروجی توسط مدار PWM تصحیح شود، که این امر باعث افزایش راندمان منبع تغذیه و کاهش مصرف انرژی می‌گردد.

INTERACTION & CROSS REGULATION : مطابق  استاندارد، با اعمال بار متقابل بر روی هر یک از خروجی‌ها، تغییر ولتاژ سایر  خطوط در  گستره معین و هماهنگ با سخت افزار به کاربرده شده باشد. این مورد در سال های اخیر با توجه به تغییرات مکرر تکنولوژی به طور مرتب رو به تغییر بوده و عدم رعایت آن باعث بروز مشکلات اساسی گردیده است.

CONDUCTED EMI : در صورتی که منبع تغذیه به فیلترهای مناسب ورودی و خروجی مجهز باشد، تداخل فرکانس های رادیویی بر روی پایانه های ورودی و خروجی باید در محدوده مجاز تعیین شده در استاندارد باشد.

RADIATED EMI : مطابق با استاندارد، تشعشعات مغناطیسی که از داخل منبع تغذیه به بیرون و بالعکس در جریان است، باعث بروز مشکل درکارکرد منبع تغذیه و نیز سایر وسایل الکترونیکی مجاور آن نگردد.

ESD PERSONAL : مطابق استاندارد، در صورت باردار شدن بدن کاربر به الکتریسیته ساکن و تماس کاربر با منبع تغذیه، مشکلی در کارکرد منبع تغذیه به وجود نیاید.

  • ShahBaz

دانلود پروژه های منبع تغذیه سوئیچینگ

ShahBaz | سه شنبه, ۲۶ اسفند ۱۳۹۳، ۰۸:۰۴ ب.ظ
دانلود پروژه های منبع تغذیه سوئیچینگ
به درخواست یکی از کاربران مبنی بر نبود مدارات و پروژه های منابع تغذیه سوئیچینگ در اینترنت ، تکنو الکترو چند مدار بسیار قدرتمند و عالی منبع تغذیه که ساخت آنها بسیار به صرفه و از طرفی جریان قابل قبولی به شما می دهند برای شما آماده کرده است 

 

مدارات منابع تغذیه که دانلود خواهید کرد :

- منبع تغذیه سوئیچینگ 3 آمپر 1.8 تا 32 ولت خروجی -- بسیار کم هزینه

- منبع تغذیه سوئیچینگ 4 آمپر با خروجی حفاظت شده 1.8 تا 32 ولت خروجی

- منبع تغذیه با جریان خروجی 5 آمپر ثابت - منبع جریان

- رگولاتور 4 آمپر قابل تنظیم

- شارژر 6 ولت با جریان محدود

منبع : وب سایت تکنو الکترو
  • ShahBaz

اپ امپ و بافر

ShahBaz | يكشنبه, ۱۰ اسفند ۱۳۹۳، ۰۸:۴۰ ب.ظ

سلام
مدار اب امب را ارسال کنید تا علت کم شدن نور مشخص شود شاید از 
مدار اماده ای استفاده کرده اید که فیلتری داردمثلا انتگرالگیر
بهر حال بافر در این موارد فقط برای مسافتهای زیاد است ودر مسافت
یک متر وحدود ان معمولا از بافر استفاده نمی شود البته نوع سنسور هم 
مهم است ولی بارامتر کلیدی نیست ونرم خروجی سنسورها بشرط بایاس
مناسب صفر ویک است
موفق باشید



  • ShahBaz

وظیفه اپ امپ

ShahBaz | يكشنبه, ۱۰ اسفند ۱۳۹۳، ۰۸:۲۵ ب.ظ
پس اپ امپ وظیفش چیه؟


آپ امپ وظیفه اش تولید 0 و 1 از طریق مقایسه ولتاژ تولید شده در خروجی با ولتاژ مرجع هستش؛

به این طریق که ابتدا فرستنده با یک جریان ثابت حدود 16 میلی آمپر اشعه ir رو ارسال میکنه و اشعه ir به بیس لنز فتوترانزیستور میرسه و در امیتر یا کلکتور فتوترانزیستور تولید ولتاژ می کنه؛

نهایتا ولتاژ کلتور یا امیتر با ولتاژ مرجع مقایسه میشه و 0 یا 1 به خروجی ارسال میشه.

نقل قول :ببینید من 10 تا سنسور دارم که میخوام مستقیم ازشون 0 و 1 بگیرم پس موردی نداره از اپ امپ استفاده کنم؟ یعنی 0 و 1 میده دیگه بهم اشالله!


نه موردی نداره ؛ فقط از یه آپ امپ پر سرعت استفاده کنین؛ مثل lm358
برای راه اندازی هم میتونین از مدار زیر استفاده کنی؛

[تصویر: ux6twtr4xww8ad0n5cy.jpg]

نقل قول :من وقتی سنسورا رو بایاس می کنم برای تست خروجی اونو از اپ امپ به یه led بردم.

نمونه مدار بایاسینگ رو واستون گذاشتم.

نقل قول :رفته رفته نور led کم میشه!!! دلیلش چیه؟ رفته رفته دقت تشخیص میره بالا و ولتاژ کم میشه!!!


اگه ولتاژ پایه رفرنست ( پایه 2 آپ امپ ) پایین میاد و دقتت میره بالا ، مدارت درسته؛
علتش مقایسه بین پایه 2 و 3 ؛
ولتاژ پایه 2 > ولتاژ پایه 3 = خروجی 0
ولتاژ پایه 2 < ولتاژ پایه 3 = خروجی 1

  • ShahBaz

آپ امپ در حالت مقایسه گری یا Comparator

ShahBaz | يكشنبه, ۱۰ اسفند ۱۳۹۳، ۰۷:۴۸ ب.ظ

آپ امپ در حالت مقایسه گری یا Comparator

آپ امپ در حالت مقایسه گری یا Comparator در این حالت کوچکترین اختلاف بین ولتاژ های ورودی تقویت شده و در خروجی نمایان می شود. در این وضعیت خروجی زمانی high یا سوییچ می شود.که مقدار ولتاژ‌ در پایه inverting یا منفی به سطح ولتاژ‌ در پایه noninverting یا مثبت برسد.این ولتاژ در شکل زیر برابر vref است. از این نوع مدار جهت مقایسه ولتاژ های ورودی به خصوص در سنسورها استفاده می شود. در این مدار به جای مقاومت R2 می توانید از پتانسیومتر جهت تعیین ولتاژ‌ Vref و تنظیم آن استفاده کنید. اشمیت تریگر در این حالت جریان ایجاد شده در بار مقاومتی متناسب با ولتاژ ورودی است.به دلیل مقاومت ورودی بسیار بالا در آپ امپ ها می توان از جریان ورودی آپ امپ ها صرفنظر کرد.بنابراین جریان خروجی از رابطه زیر محاسبه می شود. و در این حالت برعکس حالت قبلی تحریک آپ امپ از پایه مثبت صورت می گیرد.همانطور که در شکل زیر مشخص است. است. با توجه به هم پتناسیل بودن پایه های ورودی منفی و مثبت در حالت ایده آل داریم با در نظر گرفتن قانون اهم در مورد جریان IZ2 رابطه زیر را داریم همانطور که دیدید می باشد.در نتیجه فرمول فوق به صورت زیر ساده می شود. با توجه به قوانین گره و صفر بودن جریان ورودی آپ امپ در حالت ایده آل و روابط فوق رابطه زیر را داریم با ساده کردن رابطه فوق داریم در این حالت خروجی مضرب مثبتی از ورودی است. در یک آپ امپ ایده آل که به صورت زیر بسته شود.ولتاژ ورودی VS با ولتاژ خروجی برابر می شود.در این حالت به دلیل امپدانس بالای ورودی در آپ امپ ها ولتاژ خروجی با وجود برابری با ولتاژ ورودی ولی کاملا از جریان ورودی مجزا یا ایزوله شده است. مقدار ولتاژ‌ خروجی از فرمول زیر تبعیت می کند. در آپ امپ ایده آل همانطور که در نقشه ملاحظه می کنید. در این حالت جریان از پایه مثبت به پایه منفی می رود.،و از آنجا به خروجی می رود.در این حالت می شود.و در نهایت در ادامه داریم که اگر در محل اتصال خازن با پایه 2 آپ امپ مطابق شکل از قوانین مربوط به kcl استفاده کنید.همانطور که می دانید بر اساس قوانین kcl جریان های وارد شونده به یک گره با جریان های خارج شونده از گره برابرند.در این گره ای که مطرح شد.،3 جریان وجود دارد.،یک جریان را جریان خازن در نظر بگیرید.،که به گره وارد می شود.دو جریان دیگر از گره خارج می شوند.یک جریانی که وارد پایه منفی آپ امپ می شود.و جریانی که وارد مقاومت R2 در خروجی می شود.بنابراین فرمول زیر را خواهیم داشت. به دلیل مقاومت ورودی بالا در آپ امپ و در حالت ایده آل می توانیم از جریان در پایه منفی آپ امپ صرفنظر کنیم بنابراین داریم در واقع بنابر فرمول زیر همان جریانی که از خازن در ورودی می گذرد وارد خروجی نیز می شود. فرمولی که می توان در مورد جریان خازن وجود دارد.به صورت زیر است. در این فرمول c ظرفیت خازن بر حسب فاراد است.t نیز در این عبارات بیانگر این است.که این فرمول بر حسب زمان می باشد. d/dt نیز همانطور که می دانید علامت مشتق گیری است.بنابراین جریان گذرنده از خازن از حاصلضرب ظرفیت خازن در مشتق زمانی ولتاژ بدست می آید. جریان گذرنده از مقاومت فیدبکی R2 نیز از رابطه زیر محاسبه می شود. در حال ایده آل می باشد.بنابراین بنابر روابط فوق راطه زیر را خواهیم داشت. با ساده کردن عبارت فوق خواهیم داشت.همانطور که می بینیدخروجی از مشتق ورودی حاصل می شود. در شکل مثلثی ورودی مربوط به مشتق گیر.،هر جا که شیب خط مثلثی شکل زاویه ای حاده باشد لبه بالا رونده پالس را خواهیم داشت.،و هر جا که این زاویه منفرجه یا باز باشد.لبه پایین رونده پالس را خواهیم داشت. اگر شکل موج ورودی سینوسی باشد.مشتق آنرا در نظر بگیرید.وسپس به خاطر علامت منفی که در فرمول بدست آوردید.آنرا معکوس کنید. علامت منفی این عبارت با منفی فرمول بالا مثبت می شود.بنابراین در این حالت شکل موج خروجی همسان با شکل موج ورودی و جلوتر از آن ایجاد می شود.علت جلوتر بودن آن ضریب a است.که در مشتق مشاهده می کنید.این شکل موج ها را براحتی می توانید در اسیلسکوپ مشاهده کنید. اگر شکل موج ورودی مربعی باشد.،همانطور که می دانید مشتق تابع پله ای تابع ضربه ای می شود .بنابراین در خروجی هنگامیکه لبه بالارونده پالس وجود داشته باشد.، یک پالس نوک تیز به سمت بالا خواهیم داشت.و هنگامیکه لبه پایین رونده پالس را داشته باشیم.این پالس نوک تیز به سمت پایین خواهد بود.


lkfu: http://rahasys.blogsky.com/1389/09/14/post-11/
  • ShahBaz

چند تقویت کننده عملیاتی پرکاربرد

ShahBaz | يكشنبه, ۱۰ اسفند ۱۳۹۳، ۰۷:۳۵ ب.ظ

چند تقویت کننده عملیاتی پرکاربرد

Lm324

این آیسی محبوب ترین آیسی برای مدارهای ربات مسیر یاب است.این آیسی حاوی چهار عدد آپ امپ(DUAL AP-AMP)است.این آپ امپ ها جهت مقایسه ولتاژ های ایجاد شده از سنسورها به کار می رود.

ULN2803

آیسی ULN2803 حاوی بافر NOT است پایه 9 آن تغذیه منفی و پایه 18 آن تغذیه مثبت است.جریان خروجی آن در حدود 500 میلی آمپر است.این آیسی بیشتر برای درایو کردن موتور پله ای (STEPPER MOTOR) و در پروژه های ربات مسیر یاب مورد استفاده قرار می گیرد.

TL022CP

این آی سی یک آپ امپ شامل دو تقویت کننده کم مصرف می باشد.از خصوصیات این تراشه امپدانس ورودی بالا و جریان تغذیه کم می باشد.

LM358N

این آی سی یک آپ امپ شامل دو تقویت کننده با مصرف پایین و بهره بالا می باشد.

  • ShahBaz