برق، الکترونیک، الکتروتکنیک، مکاترونیک، پزشکی، کشاورزی

برق، الکترونیک، الکتروتکنیک، مکاترونیک، پزشکی، کشاورزی و

برق، الکترونیک، الکتروتکنیک، مکاترونیک، پزشکی، کشاورزی

برق، الکترونیک، الکتروتکنیک، مکاترونیک، پزشکی، کشاورزی و

داده هایی در مورد برق، الکترونیک، الکتروتکنیک، مکاترونیک، پزشکی، کشاورزی و

تبلیغات
آخرین نظرات

۲۰۲ مطلب با موضوع «برق الکترونیک رباتیک» ثبت شده است

آموزش برنامه نویسی پورت سریال در لب ویو

ShahBaz | يكشنبه, ۳ آبان ۱۳۹۴، ۱۱:۴۲ ب.ظ

آموزش برنامه نویسی پورت سریال در لب ویو

پورت سریال در لب ویو

برنامه نویسی در لب ویو خیلی راحت است و ارتباط با پورت سریال راحت تر ! با فیلم آموزشی زیر نحوه برنامه نویسی پورت سریال را یاد بگیرید و در پروژه های صنعتی و یا دانشجویی خود استفاده کنید . در فیلم آموزشی زیر نحوه برنامه نویسی پورت سریال در لب ویو و توضیحات تخصصی آن بهمراه تست عملی ارائه شده است .برای برنامه نویسی پورت سریال در لوب ویو اولا که به نرم افزار لب یو  نیاز دارید:)  و همچنین به  افزونه visa نیاز پیدا خواهید کرد که از سایت لب ویو نسبت به ورژن لب ویو خود دانلود و نصب کنید . و اگر قصد دارید برنامه را در کامپیوتر دیگری اجرا کنید یا از پروژه خود در آخر ستاپ درست کنید یا فایل exe یا اجرایی درست کنید و نرم افزار LABVIEW RUNTIME  را روی کامپیوتر مورد نظر نصب کنبد.

نمونه پروژه عملی ارتباط با پورت سریال در لب ویو :

پروژه نمایش دمای محیط در کامپیوتر با قابلیت کنترل [اتصال AVR به USB کامپیوتر]

پروژه نمایش دمای محیط در کامپیوتر با لب ویو

 

پروژه نمایش دمای محیط در کامپیوتر با لب ویو

برای نمایش دما روی کامپیوتر ما به سه قسمت نیاز داریم قسمت اول سخت افزار بیرونی ما هستش  که دارای حسگر و مبدل هستش و بعد از حس دما روی برد میکروکنترلری تعبیه شده است که وظیفه آن خواندن مقدار سنسور و ارسان آن به کامپیوتر می باشد برای ارسال داده ها به کامپیوتر بهمدار اینترفیس نیازمند هستیم که قسمت دوم پروژه ما را تشکیل می دهد و در آخر داده های دریافتی توسط پورت کامپیوتر باید نمایش داده شوند  که برای اینکار ما از نرم افزار لب ویو که یک محیط برنامه نویسی گرافیکی و پیشرفته است استفاده می کنیم.

 

امروزه اندازه گیری و تحلیل کمیت ها در صنعت به یک امر ضروری تبدیل شده است و این تحلیل باعث بهبود عملکرد سیستم و در نهایت باعث بالا رفتن کیفیت  محصول خواهد شد. در بسیاری از کاربرد ها کمیت های مختلفی را توسط سنسور ها و مبدل ها اندازه گیری و به کامپیوترها منتقل می کنند که بعدا کارشناسان آن قسمت بتوانند عملکرد سیستم را تحلیل کنند و در بعضی  موارد از روی این داده ها نمودارهایی رسم می شود.

labview+AVR+SENSOR

labview+AVR+SENSOR

 

ما در این پروژه برای نمونه کمیت دما را به عنوان کمیت مورد اندازه گیری انتخاب کرده ایم . و هدف اصلی ما در این پروژه جمع آوری داده ها نیست بلکه فقط نمایش دما روی کامپیوتر می باشد .  البته جمع آوری داده،رسم نمودار ،تحلیل داده ها و صدور فرمان های خاص کارهای خیلی آسانی هستند که می توانیم آنها را به پروژه بعدا اضافه کنیم ولی برای شروع و سادگی پروژه ما فقط اندازه گیری دما و انتقال آن به کامپیوتر و نمایش آن می باشد . که این کار حجم کار ما را کاهش خواهد داد و درک مراحل مختلف پروژه را راحتر خواهد کرد.

برای نمایش دما روی کامپیوتر ما به سه قسمت نیاز داریم قسمت اول سخت افزار بیرونی ما هستش  که داری حسگر و مبدل هستش و بعد از حس دما روی برد میکروکنترلری تعبیه شده است که وظیفه آن خواندن مقدار سنسور و ارسان آن به کامپیوتر می باشد برای ارسال داده ها به کامپیوتر به مدار اینترفیس نیازمند هستیم که قسمت دوم پروژه ما را تشکیل می دهد و در آخر داده های دریافتی توسط پورت کامپیوتر باید نمایش داده شوند  که برای اینکار ما از نرم افزار لب ویو که یک محیط برنامه نویسی گرافیکی و پیشرفته است استفاده می کنیم.

ارتباط سریال در لب ویو

نمایش دما در لب ویو

 

خب از طراجی سخت افزار  شروع می کنیم. عملکرد کلی این برد بدین صورت است که دما را با یک سنسور دما اندازه گیری کند و آن را بعد از پردازش به کامپیوتر ارسال کند .

از یک میکروکنترلر AVR هم به عنوان پردازنده استفاده می کنیم . چون اکثر میکروکنترلرهای AVR دارای مبدل آنالوگ به دیجیتال داخلی می باشند (میکروکنترلر انتخابی ما مگا32میباشد)ما از مبدل میکرو برای تبدیل خروجی ولتاژ سنسور به مقدار عددی استفاده می کنیم .

برای قسمت اینترفیس ما از پورت سخت افزاری  USBکامپیوتر استفاده خواهیم کرد ولی برای برنامه نویسی بصورت مجازی در هر دو طرف از پورت کام استفاده خواهیم کرد. بطور ساده از یک مبدل USB  به COM  استفاده می کنیم . برای اینکار از آی سی مبدل های موجود در بازار مانند FT232 استفاده می کنیم.

حالا نوبت برنامه نویسی قسمت کامپیوتر می باشد که با ما برای اینکار از نرم افزار لب ویو استفاده می کنیم البته باید یک بسته نرم افزاری دیگر که حاوی کتابخانه های ارتباط سخت افزاری لب ویو می باشد نیز باید روی سیستم نصب باشد. پس در این مرحله ما اول نرم افزار لب ویو را نصب و بعد از آن VISA را نصب می کنیم.

خب برای شروع سنسور LM35  را به میکرو وصل می کنیم برای اینکار یکی از هشت کانال ADC موجود روی میکرو یکی را انتخاب می کنیم و خروجی سنسور را مستقیم وصل می کنیم.

برای توضیحات تکمیلی فایل زیر را دانلود کنید:

دانلود فایل pdf پروژه نمایش دمای محیط در کامپیوتر با لب ویو

دانلود فایل کامل برنامه نویسی و توضیحات پروژه نمایش دمای محیط در کامپیوتر

پروژه نمایش دمای محیط در کامپیوتر با قابلیت کنترل [اتصال AVR به USB کامپیوتر]

کپی برداری از نوشته ها بدون لینک دادن به میکرو  دیزاینر الکترونیک ممنوع می باشد.

 

  • ShahBaz

کنترل دور موتور

ShahBaz | يكشنبه, ۳ آبان ۱۳۹۴، ۱۱:۴۲ ب.ظ

کنترل دور متور با pwm

کنترل دور موتور یکی از بزگترین بحث های مهندسی برق امروزی می باشد با توجه به اهمیت یافتن کنترل دقیق موتورها مثلا موتورهای مترو را تصور کنید که با اون همه وزن و فشار باید با دقت بالا کنترل شود و یا به عنوان مثال دیگر می توان تنظیم کننده زاویه پرتاب موشک را در نظر گرفت که در ان زاویه ها خیلی حیاتی و مهم می باشند . در این وقت از میکرو دیزاینربراتون یک پروژه کنترل دور موتور را تهیه کرده ام که می تواند شروع خوبی برای ساخت کنترل کننده های موتور ها باشد . وجه تمیز این پروژه با دیگر برنامه ها در نحوه نمایش سرعت  موتور روی نمایشگر است .

این پروژه شامل کد و شبیه ساز می باشد . کد آن در نرم افزار کدویژن نوشته شده است . از ادامه فایل های پروژه را دانلود کنید.

pwmmotor

دانلود پروژه کنترل دور موتور با میکرو 

کپی برداری از  این پروژه بدون ذکر نام میکرو دیزاینر الکترونیک  ممنوع می باشد.

 


کنترل دور موتور با لب ویو و pic18f2550

کنترل دور موتور با لب ویو و  pic18f2550

امروزه کنترل دور موتو با کامپیوتر در صنعت خیلی کاربرد دارد امروز پروژه ای را برایتان آماده کرده ایم که هم از یک میکروکنترلر صنعتی استفاده می کند و هم از نرم افزار برنامه نویسی قدرتمند لب ویو . ترکیب این دوتا با روش PID ارزش پروژه را زیاد می کند . از ادامه نوشته این پروژه را دانلود و نهایت استفاده را بکنید .

 

pic18f2550-pid-control-dc-motor-pid-labview

 

6313735361_d9de04cb74

دانلود فایل های پروژه  شماتیک ،برنامه و برنامه لب ویو 

 

منبع :cristpalma.blogspot.com/2011/11/control-pid-para-motor-dc-lectura-y.html

کنترل دور موتور با لب ویو و  pic18f2550

پروژه های درخواستی خود را در قسمت نظرات مطرح کنید.


کنترل دور موتور DC با Encoder

 

امروزه در صنعت و در بسیاری از وسایل خانگی کنترل دور موتور مورد استفاده قرار می گیرد . از جمله    می توان به کاربرد های کنترل گرهای دور موتور ، به موارد زیر اشاره کرد.

1) وسایل خانگی :

 کنترل گر های دور موتور در وسایل شخصی خانگی، در کاربرد های کوچک و بزرگ مورد استفاده قرار   می گیرند .به عنوان مثال، پنکه های دیواری یا پنکه تهویه حمام که توسط کلیدی کنترل می شوند.

2) در وسایل اداری و درمانی:

در این دسته دستگاه های بسیاری را می توان نام برد.

مداد تراش های برقی در ادارات، دستگاه های فکس، کامپیوتر ها یا دستگاه های کپی و …  . سیستم کاری این کنترل گر ها بسیار پیچیده بوده و حتی در مورد وسایل درمانی پیچیده تر نیز می شوند. یکی از این موارد کنترل دور موتور داخل هارد دیسک کامپیوتر می باشد که سیستم پیچیده تری دارد.

3) در کاربرد های تجاری :

 ساختمان های تجاری دارای سیستم تهویه بزرگتر و مجهز تری نسبت به موارد مشابه در منازل شخصی دارند. همچنین می توان در این دسته موتور ها،پله های برقی و موارد مشابه را نام برد.

4) کاربرد های صنعتی :

بسیاری از صنایع وابسته به موتور ها و کنترل دور آن ها می باشند. موتور های DC کوچک تا موتور های بزرگ صنعتی ، یا موتور های استفاده شده در خطوط مترو. همچنین در صنعت ممکن است یک کنترل گر عمل کنترل بیش از موتور را به طور همزمان بر عهده داشته باشد.

5) در وسایل نقلیه:

تمام وسایل نقلیه از جمله، خودروها، هواپیما ها، دستگاه الات کشاورزی، همه و همه ممکن است دارای موتور برای انجام کار های گوناگونی باشند.

6) ابزار قدرت:

وسایل قدرتی همانند دریل ها، اره ها، چرخ سمباده ها که توسط کاربر خانگی استفاده می شوند. تمام وسایل قدرتی قابل حمل یا ثابت معمولاً همراه با کنترل گر های سرعت این موتور ها نیز می باشند.

dc motor

دانلود مقاله کنترل دور موتور dc با اینکدر

دانلود  از سرور2



  • ShahBaz

ساخت چراغ قوه با LED

ShahBaz | يكشنبه, ۳ آبان ۱۳۹۴، ۱۱:۳۴ ب.ظ

ساخت چراغ قوه با 500 تا LED

بیشترین تعداد ال ای دی سفید که کنار هم چیدین تا باهاش چراغ بسازین چندتا بودن ؟! امروز براتون می خوام یک چراغ قوه ای را معرفی کنم که با 500 تا ال ای دی پر نور ساخته شده است . باطری این چراغ قوه خفن توانایی شارژ مجدد را دارد و نکته مهم این است که چراغ قابل حمل می باشد . در ادامه با ما باشید تا با این چراغ بیشتر آشنا بشویم .

چراغ قوه با 500تا ال ای دی

چراغ قوه خفن

نورش واقعا عالی هستش

تست نور چراغ قوه ال ای دی

نور چراغ قوه ال ای دی

در ادامه فیلم کوتاهی از مراحل ساخت و بلوک کلی چراغ ارائه شده است .

فیلمی از مراحل ساخت و نمایش قدرت چراغ



لامپ LED 220V بسازید

یکی از بحث های جامعه امروزی ما صرفه جویی در مصرف انرژی می باشد که با جایگزینی لامپ های led به جای لامپ های رشته ای می توانیم به میزان قابل ملاحظه ای در مصرف برق صرفه جویی کنیم . فقط قیمت لامپ های ال ای دی کمی بالا هستند که ما می خواهیم امروز لامپ ال ای دی خودمان را بسازیم . در ادامه با ما باشید.

شماتیک لامپ ما :

leds-lamp

مدارمان را داخل جعبه های لامپ های کم مصرف جاسازی می کنیم

ledler-7

محصول نهایی

led-220-1




شماتیک و PCB لامپ LED با کمترین قطعات

شماتیک و PCB لامپ LED با کمترین قطعات

مدار این پروژه حرفه ای نیست ولی بدرد بخور هستش یعنی با کمترین امکانات بیشترین نور .این مدار دارای 54 تا ال ای دی پر نور هستش که بصورت سری بسته شده اند ،دوتا خازن،دوتا مقاومت ،یک فیوز و یک دیود پل اجزای این مدار هستن البته برای امنیت بیشتر اگر با هر ال ای دی مقاومتی با اهم زیاد سری شود طول عمر مدار زیاد میشه…

led-noo-onled-schim-mic led-proteus

 دانلود pcb مدار لامپ LED با کمترین قطعات 

شماتیک و pcb در نرم افزار پروتیوس طراحی شده اند .


لامپ کم مصرف 220 ولت LED خودتان را بسازید .

این لامپ برای 230ولت طراحی شده در نتیجه  ال ای دی ها آسیب پذیری کمتری دارن . امید وارم خوشتان بیاید

230v-led-ekonomik-aydinlatma-led-lamba-led-aydinlatma-led-lighting-circuits-lighting-with-led

 



  • ShahBaz

مدار منبع تغذیه 0-20 ولت 10 آمپر

ShahBaz | يكشنبه, ۳ آبان ۱۳۹۴، ۱۱:۰۹ ب.ظ

مدار منبع تغذیه 0-20 ولت 10 آمپر

مدار این منبع تغذیه خیلی ساده است در این منبع تغذیه از رگولاتور LM317T استفاده شده که یک آمپر را می تونه تحمل کنه و همچنین از دو ترانزیستورMJ15004 بصورت موازی استفاده شده که توانایی این منبع تغذیه را بیشتر می کنند . همچنین این مدار در مقابل اتصال کوتاه محافظ است ….این ترانزیستورها اگر ارجینالش را بدست بیارید 250 وات هستن !

2

 

3

 

منبع پروژه : 320volt دات کام . سازنده : YAMYAM

 منبع تغذیه سوئیچینگ DC به DC  با رنج  0-30 ولت 3 آمپر  دیجیتال

  • ShahBaz

پروژه ترازوی دیجیتال

ShahBaz | يكشنبه, ۳ آبان ۱۳۹۴، ۱۰:۵۶ ب.ظ

پروژه ترازوی دیجیتال

امروزه با پیشرفت علم الکترونیک و دیجیتال ، ترازوهای دیجیتالی با کاربرد بالا ساخته می شود. این ترازوها در انواع طرح ها ، اندازه ها و برای کارها ی مختلف ساخته می شوند. که قصد داریم در ادامه با طرز ساخت یک نوع ترازو دیجیتالی آنها آشنا شویم.

پروژه ترازوی دیجیتال

مزایای اندازه گیری الکترونیکی

1-امکان پردازش دلخواه روی داده هاتوسط روشهای آنالوگ یادیجیتالی.

2-به دست آمدن سرعت باسخ بالا.

3-اندازه کیری ازراه دورکه کاربردهای بسیارزیادی درزمینه های مختلف مانند پزشکی ،صنایع هوایی و … دارد.

4-انتقال آسان وباصرفه سیگنال به کمک کابل مسی وفیبرهای نوری ویاامواج رادیویی.

5-امکان جمع آوری اطلاعات ازحس کننده های مختلف تنهابایک خطانتقال بااستفاده ازایده باس.

6-مصرف کم امپدانس ورودی بالاونتیجتاجذب انرژی بسیارکم ازمحیط فیزیکی تحت اندازه گیری.

7-امکان ساخت کلیه بلوک های تشکیل دهنده یک سیستم اندازه گیری روی یک تراشه که دراین حالت اصطلاحا آن راحس کننده هوشمند می نامند.

8-استفاده ازتکنولوژی پیشرفته سیلیسیوم جهت ساخت سنسورهای بسیارکوچک وامکان تولیدانبوه آنهاباقیمت کم.

معایب اندازه گیری الکترونیکی

علیرقم مزایای فوق درمواردی امکان دارد که استفاده ازسیستم های اندازه گیری غیرالکترونیکی ترجیح داده شود.ازجمله درمواردی که تغییرات دماخارج ازمحدوده کارادوات نیمه هادی باشد یادرمحیط های حساس که احتمال انفجاریااشتغال مواد می رودازسیستم های پنوماتیک یاهیدرولیک استفاده میشود.

 

خلاصه پروژه ترازوی دیجیتال 

در این مدار ولتاژهای مورد نیاز برای Atmega16 و LCD ، +5V ، برای Load cell ، +12V و برای Ad620 ، 12V ± می باشد که برای این منظور از دو عدد L7812cv برای تولید ولتاژ 12V ± بدین ترتیب که خروجی این دو آی سی را با هم به صورت متقارن قرار داده  و L7805cv برای تواید ولتاژ 5V که به خروجی U3 متصل شده استفاده کرده ایم .

ولتاژ تغذیه Load cell به +12V متصل شده و خروجی Load cell که با توجه به مقدار وزنی که بر روی آن قرار دارد بین 0 تا 20mV تغییر می کند برای تقویت به پایه های ورودی Ad620 که 2 و 3 می باشندمتصل شده است. ولتاژ تغذیه Ad620 از طریق منبع متقارن  12V ± تأمین می شود.پایه Ref این آی سی به صفر ولت متصل شده و برای کنترل بهره Ad620 از پتانسیومتر 300Ω که روی14.2 Ω  تنظیم می شود استفاده شده است .

خروجی Ad620 که با توجه به تغییرات خروجی Load cell از 0 تا +5V تغییر می کند به Adc0 وAdc1 ( مبدل آنالوگ به دیجیتال ) میکرو که پایه های 40 و 39 می باشند متصل شده است. ( Adc1 به منظور یدک استفاده شده است )

ولتاژ تغذیه میکرو به +5V متصل شده است. پورت D میکرو برای نمایش مقدار وزن به LCD متصل شده و ولتاژ تغذیه LCD به +5V متصل شده است .

برای تولید فرکانس 8MHZ از کریستال 8MHZ و دو خازن 22nf استفاده شده است .در این مدار کانکتورهایی برای پورت های B و C و پین های 2 تا 7 پورت A که  بلا استفاده قرار گرفته اند تعبیه شده است .

 

 

لود سل 1R1-K

Load cell

لود سل یک سنسور وزن است ، 1R1 – K  لود سل استفاده شده در این مدار می باشد.لودسل قطعه ای است ، یک سر آن با دو پیچ (2-M5) بر روی شاسی ترازو بسته و ثابت می شود و یک صفحه فلزی به وسیله دوپیچ (2-M4) بر روی طرف دیگر لود سل بسته می شود و کفه ترازو بر روی این صفحه فلزی قرار می گیرد و این ترتیب وزن بر روی صفحه فلزی اعمال می شود با اعمال وزن ، ولتاژ خروجی لودسل با توجه به مقدار وزن موجود بر روی صفحه بین 0 تا 20mv تغییر می کند.

digital_loadcell__

 مشخصات لود سل استفاده شده در این مدار ( 1R1 – k )

– ظرفیت لود سل استفاده شده در این مدار 5 کیلو گرم می باشد.

– مقدار خطای ترکیب شده در این سنسور 0.03 می باشد ، یعنی مقدار وزنی که این سنسور نشان می دهد در مقایسه با مقدار واقعی وزن به مقدار 0.03 خطا دارد.

– حساسیت خروجی این سنسور 1.2mv می باشد ، یعنی کوچکترین تغییرات خروجی که به ازای تغییر وزن 1.2mv است.

– مقدار تلرانس حساسیت خروجی این سنسور  0.15mv± است.

– منحنی تغییرات خروجی این سنسور به ازای ورودی به مقدار0.03 % F . S .  ± غیر خطی است.

– قابلیت تکرار پذیری این سنسور0.03 % F . S .  ± می باشد ، یعنی در بار ثابت نمونه برداری از خروجی این سنسور در ساعات مختلف روز به مقدار0.03 % F . S .  ± تغییر می کند.

– در این سنسور مقدار خروجی هنگام افزایش وزن با مقدار خروجی هنگام کاهش وزن به مقدار0.03 % F . S .  ± با هم اختلاف دارند.

– مقدار بالانس صفر این این سنسور به مقدار 0.1mv  ± است.

– مقدار مقاومت ورودی این سنسور 1055 ± 10  است.

– مقدار مقاومت خروجی این سنسور 1000 ± 10  است.

– مقدار مقاومت عایق این سنسور به مقدار ≥ 2000 MΩ است.

– مقدار وتاژ تحریک این سنسور ≥ 10 V است.

– محدوده دمای عملکرد معمولی این سنسور بین – 10 ~ + 40 C است.

این نوع لود سل با این مشخصات بیشتر برای ترازو های آشپزخانه توصیه می شود.

دانلود فایل ها :::

دانلود پایان نامه پروژه ترازوی دیجیتال

نوع فایل : PDF

تعداد صفحه : 54

دانلود فایل ورد : از قسمت تماس با ما تماس بگیرید

سفارش ساخت پروژه

 

  • ShahBaz

گشتاور چیست ؟

ShahBaz | يكشنبه, ۳ آبان ۱۳۹۴، ۰۹:۳۶ ق.ظ

[تصویر:  Torque_animation.gif]

رابطه میان نیرو (F), گشتاور(τ), و بردارهای ممان (p و L) در یک سیستم در حال چرخش.
عامل مؤثر در گشتن هر جسم به دور محوری را گَشتاوَر یا مُماننیرو می‌نامند.
گشتاور یک کمیت فیزیکی است در حرکت چرخشی که به بزرگی نیرو و مسیر و مکان اثر نیرو بستگی دارد. گشتاور یک کمیت برداری هست.
حاصلضرب خارجی بردار مکان نقطه اثر نیرو در بردار نیروی وارد بر یک نقطه را گشتاور آن نیرو (حول مبدأ) گویند.
همان طور که از تعریف بر می‌آید، گشتاور کمیت نسبی بوده و نسبت به یک نقطه (مبدا) سنجیده می‌شود.


دید کلی

• آیا تابحال به این فکر کرده‌اید که چرا آچار بلند مهره محکم را آسانتر باز می‌کند؟
• چرا احتمال واژگون شدن یک ماشین مسابقه از یک ماشین معمولی کمتر است؟

برای پاسخگویی به این سؤالها باید ببینیم نیروها چگونه می‌توانند باعث چرخش شوند. به عنوان مثال در نظر بگیرید می‌خواهید وارد اتاقی شوید، برای اینکار نیرویی عمودی بر در وارد می‌کنید، در حول لولا (محور) شروع به چرخش می‌کند و باز می‌شود هر چه بزرگتر باشد در راحت تر باز می‌شود. اگر بار دیگر همین نیرو را به نقاط دورتر در که به لولا نزدیکترند وارد کنید در براحتی باز نخواهند شد، به این ترتیب نتیجه می‌گیریم که هر چه فاصله نقطه اثر نیرو از محور چرخش دورتر باشد و نیز هر چه اندازه نیروی وارد بر در بیشتر باشد در راحت تر باز می‌شود.

خصوصیات گشتاور نیرو

• گشتاور نیرو کمیتی برداری است و مقدار بردار گشتاور نیرو برابر است با حاصلضرب نیرو در فاصله عمودی آن از محوری که جسم به دور آن می‌گردد.

• گشتاور نیرو با حرف Mنمایش داده می‌شود.
• فاصله عمودی نیرو از نقطه‌ای که جسم حول آن می‌گردد را بازوی گشتاور می‌نامند (d).
•نقطه چرخش را می‌توان روی تکیه گاه جسم یا روی محور چرخش جسم در نظر گرفت.
•رابطه گشتاورنیرو (مقدار نیرو × بازوی گشتاور).
•یکای گشتاور نیرو ، نیوتن متر (Nm) است. 



روش دیگر محاسبه گشتاور نیرو

برای محاسبه گشتاور نیرو می‌توانیم نیروی را به دو مؤلفه عمود بر هم تجزیه کنیم، بطوری که یکی از مؤلفه‌ها از محور دوران یا گذشته و دیگری عمود بر این محور باشد. حال نیروی را به دو مؤلفه و روی این دو محور تجزیه می‌کنیم، گشتاور نیروی برابر برآِیند گشتاورهای دو نیروی - است. پس گشتاور هر یک از نیروهای را محاسبه می‌کنیم، برآیند این دو گشتاور، گشتاور کل را تشکیل می‌دهد. اما بازوی گشتاور نیروی برابر صفر است.

علامت گشتاور نیرو
اگر گشتاور نیرو ، جسم را در جهت مثلثاتی دوران دهد علامت آن مثبت و اگر در خلاف جهت مثلثاتی دوران دهد علامت آن را منفی در نظر می‌گیرند. البته در تعیین جهت گشتاور می توان به دلخواه عمل کرد ولی صحیح این است که در جهت پاد ساعت گرد مثبت و درجهت ساعت گرد منفی و به این نکته توجه کنید که در طول مسئله جهت گشتاور را یکسان در نظر بگیرید.

گشتاور صفر
نیروهایی که امتداد آنها از نقطه عبور می‌کند گشتاور نیرویی نسبت به این نقطه ندارند. بنابراین نیرویی که تکیه گاه بر میله وارد می‌کند دارای گشتاور صفر می‌باشد.

قانون گشتاورها
در یک جسم متعادل ، جمع گشتاورهای پاد ساعتگرد با جمع گشتاورهای ساعتگرد ، حول هر نقطه دلخواه برابر است.

تعادل
جسمی را در حال تعادل گویند که هر دو شرط زیر درباره آن درست باشد:

• برآیند نیروهای وارد بر آن صفر باشد.

• جمع گشتاور نیروهای ساعتگرد حول هر نقطه ، برابر جمع گشتاور نیروهای پاد ساعتگردحول همان نقطه باشد.

به کمک معادله‌های مربوط به روش فوق می‌توان اندازه نیرویی مجهول ، یا فاصله نقطه اثر آنها از نقطه چرخش را حساب کرد.
برای انجام این کار:

• جهتهایی را انتخاب کنید که معادله‌های نیروها را آسان می‌کنند. برای مثال برآیند نیروهای رو به بالا و برآیند نیروهای رو به پایین همیشه باهم برابرند.

• نقطه چرخش را انتخاب کنید که محاسبه گشتاورها را آن می‌سازد، اگر بیش از دو نیرو وجود دارد نقطه چرخش را جایی انتخاب کنید که یکی از نیروها در آنجا به جسم وارد می‌شود، در این صورت گشتاور نیرو حول آن نقطه چرخش صفر می‌شود، بنابراین محاسبه ساده‌تر خواهد شد.

جفت نیرو
دو نیرو که اثر چرخش یکدیگر را خنثی می‌کنند جفت نیرو نام دارند و شرط زیر را دارند:

• اندازه آنها برابر و جهت آنها مخالف است.


==============================

بر اساس سامانه استاندارد بین‌المللی یکاها (SI)، دور بر دقیقه یک یکای استاندارد نیست. دلیل آن است که دوران و چرخش یک مفهوم معنایی است نه یک یکا. در این سامانه،کمیت‌های بسامد و سرعت دورانی به‌ترتیب با f و ω یا Ω نشان داده شده و یکای آنها در سامانهٔ استاندارد یکاها، s−۱ یا هرتز برای بسامد و rad·s−۱ برای سرعت دورانی است.

در دینامیک، برای محاسبات سرعت دورانی و از نظر دیمانسیون، باید از یکای رادیان بر ثانیه برای سرعت دورانی استفاده شود و یکاهای دور بر دقیقه یا هرتز، همه باید به رادیان بر ثانیه تبدیل شوند.

برای این کار کافیست (rpm) را در 2П/60 ضرب کنیم 

=========================

چگونه از روی گشتاور موتور، قدرت موتور را بر حسب اسب بخار محاسبه کنیم؟




این موتور قدرتی معادل ٥٢٥ اسب بخار را در ٥٦٠٠ دور در دقیقه تولید میکند!


به طور حتم جملاتی شبیه این جمله را بسیار شنیده یا خوانده اید. اما سوال اینجاست که قدرت موتور چگونه بر حسب اسب بخار محاسبه می شود؟


برای این منظور معادله ای وجود دارد که می توان از طریق این معادله با داشتن اطلاعات اولیه مانند گشتاور موتور و دور در دقیقه ؛ قدرت را بر حسب اسب بخار محاسبه نمود: 


Torque * RPM ) / 5.252 = Horsepower )


به طور مثال اگر موتوری در ٤٠٠٠ دور در دقیقه در حال کار باشد و بنابر طراحی این موتور در این دور گشتاوری معادل ٣٠٠ پوند-فوت را تولید کند با استفاده از معادله بالا قدرتی معادل ٢٢٨ اسب بخار دارد .




حال سوال دیگری که ممکن است پیش بیاید این است که عدد ٥.٢٥٢ از کجا آمده است؟


پاسخ را باید این طور مطرح کرد که در واقع این عدد حاصل ضرب و تقسیم ضریب های مختلفی ست که در نهایت برای سادگی در نوشتن معادله به این صورت نوشته شده است . 


اول باید بدانیم که یک اسب بخار معادل ٥٥٠ پوند-فوت در ثانیه است. پوند-فوت واحد گشتاور در سیستم انگلیسی ست که در سیستم SI معادل نیوتن متر میباشد.


با دانستن این مطلب اگر بدانیم که موتور در هر ثانیه چه گشتاوری تولید می کند در واقع می توان قدرت آن را محاسبه نمود.




اما از طرف دیگر دور موتور به طور معمول بر حسب دور در دقیقه محاسبه می شود. برای تبدیل دقیقه به ثانیه کافی ست که rpm را بر ٦٠ تقسیم کنیم و حال بعد از این کار احتیاج به عددی داریم که واحد نداشته باشد. یعنی واحد دور را باید به خاطر بدست آوردن پوند – فوت بر ثانیه از معادله به نحوی حذف نمود و راه حل این است که دور را به رادیان تبدیل کنیم. برای این کار باید rpm را در عدد 2π ضرب کنیم. پس تا به حال داریم : (2π/60) که معادل عدد ١٠٤٧٢/٠ رادیان بر ثانیه می باشد.


حال تنها کاری که باید انجام دهیم این است که تمام این اعداد را با هم در معادله قرار دهیم با تقسیم عدد ٥٥٠ پوند – فوت بر عدد ١٠٤٧٢/٠ رادیان بر ثانیه خواهیم داشت ٥.٢٥٢ که همان عددی ست که در معادله اول مشاهده کردید.


این عدد در واقع گشتاور موتور را بر ٥٥٠ تقسیم می کند و rpm را به رادیان بر ثانیه تبدیل می کند که با ضرب تمام این اعداد در نهایت قدرت موتور بدست می آید.

==================================

رادیان بر ثانیه، که با rad·s−۱ یا rad/s نشان داده می‌شود، یکای سرعت زاویه‌ای در سامانهٔ SI است. رادیان بر ثانیه، همچنین یکای بسامد زاویه‌ای نیز هست.

رادیان بر ثانیه، به‌صورت تغییر جهت‌گیری یک جسم بر حسب رادیان در هر ثانیه تعریف می‌شود. با توجه به اینکه رادیان یدون دیمانسیون است، از نظر ابعادی معادل با هرتز است.

بسامد زاویه‌ای، ω بسامد، f = \omega/{2\pi}
۲π رادیان بر ثانیه دقیقاً ۱ هرتز
۱ رادیان بر ثانیه تقریباً ۰٫۱۵۹۱۵۵ هرتز
۱ رادیان بر ثانیه تقریباً ۵۷٫۲۹۵۷۸ درجه بر ثانیه
۱ رادیان بر ثانیه تفریباً ۹٫۵۴۹۳ دور بر دقیقه

یکی از کاربردهای مهم یکای رادیان بر ثانیه، در محاسبهٔ توان منتقل‌شده توسط یک محور دوار است.

توان منتقل‌شده توسط یک محور دوار، P، (بر حسب وات) از حاصل‌ضرب سرعت دوران محور W  (بر حسب رادیان بر ثانیه) در گشتاور  T موجود در محور (بر حسب نیوتن متر) بدست می‌آید.

p=w*T

===============================

شما مى توانید "اسب بخار" را از ضرب گشتاور در سرعت موتور بدست آورید.

اما سرعت موتور بر حسب دور بر دقیقه بیان مى شود در حالی که ما ترم "بر ثانیه" را نیاز داریم.پس نیاز داریم که (rpm) را بر حسب ثانیه بیان کنیم.

بدست اوردن ثانیه آسان است.فقط با تقسیم کردن (rpm) بر 60 مى توانیم ثانیه را از دقیقه بدست اوریم.حال به یک واحد بى بعد براى دور نیازمندیم.

رادیان, رادیان در حقیقت نسبت طول کمان دایره به طول شعاع دایره است که یک واحد بى بعد مى شود.چون واحد طول از طرفین صورت و مخرج حذف مى گردد.دور را مى توان بر حسب زاویه نیز بیان کرد.

یک دور 360 درجه از دایره است.محیط دایره نیز 2П رادیان است.پس یک دور معادل 2П رادیان است.

برای تبدیل "دور بر دقیقه" به " رادیان بر ثانیه" کافیست (rpm) را در 2П/60 ضرب کنیم.

=============================


 نگرشی مختصر بر پارامتر های مکانیکی موتور های DC

هدف از این نوشتار آشنایی با عوامل مکانیکی موثر در انتخاب یک موتور DC برای کاربرد روباتیکی است. برای حرکت یک عضو روباتیکی عمدتا" چند عامل را در نظر می گیریم: نیروی لازم برای حرکت، سرعت حرکت و دقت آن. در موتور های الکتریکی حرکت به صورت دورانی است. برای ارتباط حرکت دورانی به نیرو از کمیتی به اسم گشتاور استفاده می کنیم که بیان کننده ی نیروی در دسترس در فاصله ی معینی از محور دوران است ‌‌‍[واحد: N.m]. به عنوان مثال اگر موتور گشتاوری معادل یک نیوتون.متر تولید کند، آن گاه می تواند در فاصله ی 20 سانتی متری نیرویی به بزرگی 5 نیوتون وارد نماید. درواقع نیرو برابر است با گشتاور تقسیم بر فاصله.

سرعت دوران موتور ها را نیز با کمیتی به نام سرعت زاویه ای اندازه می گیرند. در SI واحد سرعت زاویه ای رادیان بر ثانیه است که بیان می کند یک جسم دوار چه مقدار زاویه را بر حسب رادیان در طول یک ثانیه می پیماید. معمولا" در موتور های الکتریکی از واحد دور بر دقیقه (rpm) استفاده می شود که با ضرب کردن مقدار rpm در عدد 0.105 آن را به rad/s تبدیل می کنیم. سرعت خطی یک جسم متصل به یک محور دوار از ضرب سرعت زاویه ای آن محور در فاصله ی عمودی بین محور دوارن و آن جسم به دست می آید. مثلا" اگر جسمی با یک بازو به محوری دوار وصل بوده به گونه ای که محور دارای سرعت دورانی 100 دور بر دقیقه و فاصله ی عمودی محور و جسم برابر 1 متر باشد، آن گاه بزرگی سرعت جسم 10.5 متر بر ثانیه خواهد بود.


موتور های DC اگر تحت ولتاژ اسمی خود راه اندازی شوند می توانند با یک سرعت زاویه ای مشخص دوران کنند و مقدار معینی گشتاور تولید نماید. چناچه موتور زیر بار قرار گیرد (مثلا" به یک چرخ متصل شود) مقدار سرعت زاویه ای و گشتاور آن تغییر خواهد کرد و موتور جریان بیش تری از منبع می کشد. در کاتالوگ یا datasheet موتور های DC معتبر معمولا" نمودار rpm بر حسب گشتاور وجود دارد که بیان می کند در یک rpm مشخص مقدار گشتاور تولیدی چقدر خواهد بود. اگر مقدار گشتاور را در سرعت زاویه ای ضرب کنیم کمیتی به نام توان به دست می آید که نشان دهنده ی نرخ زمانی مصرف انرژی است [واحد وات].

حداکثر سرعت زاویه ای موتور در حالت بی باری را No Load Speed یا Free RPM می نامند. در سرعت بی باری مقدار گشتاور تولیدی را صفر در نظر می گیریم. حداکثر گشتاور تولیدی (Stall Torque) زمانی خواهد بود که دور موتور به صفر برسد. البته مقداری که عموما" با آن سر و کار خواهیم داشت Rated Torque یا Nominal Torque نام دارد که مبین گشتاور بیشینه ایست که به طور پیوسته در اختیار است بدون آن که به موتور آسیبی وارد آید.


جعبه دنده یا گیربکس ماشینی است که همراه موتور الکتریکی به کار می رود. گیربکس به عنوان یک سیستم سرعت دورانی و گشتاور را از موتور دریافت می کند و سرعت و گشتاور مطلوب را به عنوان خروجی تحویل می دهد. بدین ترتیب می توانیم از یک موتور در کاربرد های مختلف بهره گیریم. گیربکس ها قادر اند مقدار گشتاور را کاهش و یا افزایش دهند اما همواره نسبت بین گشتاور و سرعت زاویه ای و گشتاور خروجی عکس خواهد بود یعنی جعبه دنده ای که گشتاور ورودی را فزایش می دهد، سرعت زاویه ای ورودی را کاهش می دهد. برای روشن تر شدن قضیه به این مثال توجه کنیم: با اتصال یک جعبه دنده با نسبت 5:1 به موتوری با سرعت 500 rpm و گشتاور تولیدی 0.2 N.m در خروجی سیستم 100 rpm و 1 Nm را خواهیم داشت.


==========================

البته خود گشتاور هم نیرو نیست. گشتاور = نیرو ضربدر بازوی اعمال نیرو



نیرو
یرو موجب شتاب می شود . اگر شما یک نیرو به ماشین اسباب بازی وارد کنید ، مثلاً : ( با دست خود آن را هل دهید ) ، شروع به حرکت می کند . ممکن است ساده به نظر آید ، اما این یک حقیقت خیلی مهم است .

f=ma یا a=f/m
( f : نیرو و m : جرم و a: شتاب )
واحدهای رایج برای جرم :
1g=0.001kg Gram(g) : SI سیستم


یک نیوتون نیروی ، برای اینکه به یک جسم یک کیلوگرمی شتاب 1 متر بر مجذور ثانیه  داده شود ، کافی است .

زمین به جسم های در حال سقوط نیروی کافی وارد می کند تا شتاب 9/8 متر بر مجذور ثانیه یا 32 فوت بر مجذور ثانیه بگیرند . این نیروی گرانشی اغلب در معادلات با علامت g نشان داده می شود . اگر جسمی را از یک تخته سنگ پایین پرتاب کنید ، به ازای هر ثانیه ای که در حرکت رو به پایین باشد ، سرعت 9/8 متر بر ثانیه افزایش می یابد . بنابراین اگر در مدت زمان 5 ثانیه سقوط کنید ، در هنگام رسیدن به زمین 49 متر بر ثانیه سرعت دارد .



گشتاور خروجی موتور خودرو چیست ؟

عامل مؤثر در گشتن هر جسم به دور محوری را گشتاور نیرو یا لنگر و یا تورک ( Torque ) می‌نامند .

گشتاور یک کمیت فیزیکی است در حرکت چرخشی که به بزرگی نیرو و مسیر و مکان اثر نیرو بستگی دارد . گشتاور یک کمیت برداری بوده و یکای آن در سامانه استاندارد بین‌المللی یکاها، نیوتن متر است .

از تعریف فوق جز مهندسین مکانیکی که علاقه به این مبحث را دارند ، بیشتر کسی متوجه نخواهد شد ، البته این تعریف بسیار کامل ، جامع و درست است ، ولی در زبان خودرو ، که همه چیز به سادگی مطرح می¬شود ، این تعریف جایگاهی ندارد .

گشتاور به معنی ، نیروی وارد شده ( نیروی اعمال شده ) به جسمی می باشد ، که از فاصله محل وارد شدن نیرو به محلی که قرار است نیرو به آن وارو شود ، فاصله ای وجود داشته باشد ( حتی اگر این فاصله 1 میکرو متر یا یک میلیونوم متر باشد ) .

به عنوان مثال ، زمانی که آچاری را برای سفت نمودن پیچی استفاده می نمایید ، از دست شما که آچار را نگه داشته است ، به پیچی که در حال سفت نمودن آن هستید ، گشتاوری وارد می-شود . برای محاسبه این گشتاور ، میزان نیرویی که دست شما به آچار وارد می نماید را در طول آچاری که مورد استفاده قرار می دهید ، ضرب نموده و عددی که بدست می آید بر حسب نیوتن متر و یا پوند بر فوت می باشد .

در خودرو این اعداد با توجه به دستگاه دینامومتر (Dinamometro ) بدست می¬آید . البته همیشه بر روی نمودار ، اسب بخار بر حسب دور بر دقیقه ، نمودار دیگری وجود داشته که تورک به آن گویند و آن نیز بر حسب دور بر دقیقه سنجیده می شود .

برای اینکه درک بهتری از تورک داشته باشیم باید به این نکته اشاره داشته باشم ، که همه ما در موقع رانندگی پس از رسیدن به دور موتوری خاص ، نسبت به تعویض دنده اقدام می-نماییم ( در سیستم تعویض دنده دستی ) ، البته در خودروهایی که دارای جعبه دنده اتوماتیک هستند ، اینکه در چه دور موتوری عمل تعویض صورت گیرد با توجه به نوع رانندگی و نوع برنامه پیش فرض برای رانندگی در نظر خواهند گرفت .

البته این را باید بدانیم که موتور هر خودرویی در یک دور موتور مشخص حداکثر خروجی گشتاور را در اختیار راننده قرار می دهد و این دور موتور که به صورت بازه و یا عددی خاص بوده است را ، بهترین زمان تعویض دنده بوده و بهترین حالت مصرف سوخت خودرو را اکثرا در این دور موتور بدست می آورند .

پس دانستن حداکثر گشتاور خودرو که در چه دور موتوری در اختیارمان قرار خواهد گرفت به ما کمک نموده تا بتوانیم ، بهترین زمان تعویض دنده را انتخاب نماییم و به بهترین سیکل مصرف سوخت برسیم .





  • ShahBaz

آموزش راه اندازی موتور DC با استفاده آز آی سی درایور L298N در دو جهت



درایور چیست ؟   

   همان طور که می دانیم  موتور های جریان مستقیم برای کار کردن نیاز به تغذیه (بایاس) دارند . معمولا موتور هایی که برای ساخن ربات های دانشگاهی استفاده می شود با ولتاژ های 5 یا 6 یا 9 یا 12 یا 24 کار می کند . و بسته به مدل ، روش ساخت ، قیمت و ... دارای جریان کشی حدود 100 میلی آمپر تا 5 آمپر می باشند . یک روش آن است که آن را مستقیما به باطری وصل نماییم در این صورت با سرعت نهایی هود و در یک جهت خاص می چرخد اما در ربات ها ما نیاز به کنترل موتور [ روشن و خاموش کردن ، کنترل سرعت ، کنترل جهت و کنترل موقعیت ] داریم  در نتیجه باید موتور را با استفاده از کنترلر ها ( مدارات منطقی یا مایکروکنترلر ها یا پی ال سی یا رایانه)  کنترل نماییم . آما همان طور که می دانیم خروجی میکروکنترلر ها 5 ولت و 2 میلی آمپر است و نمی تواند موتور را بچرخاند . بنابراین ما نیاز به مدارات واسطه برای اتصال کنترلر به موتور داریم . به این مدارات درایور می گویند . که این درایور می تواند ترکیب رله و ترانزیستور یا آی سی یا مدارات ترکیبی باشد . معمولا برای موتور های دارای ولتاژ 5 تا 46 و جریان حداکثر 2 آمپر از آی سی L298N استفاده می شود . قابل ذکر است با یک آی سی می توان دو موتور دی سی را همزمان کنترل نمود .

   
ساختمان داخلی L298N  



ترتیب و نام پایه ها ی آی سی L298N   



راه اندازی دو موتور جریات مستقیم به صورت هم زمان با قابلیت گردش در دو جهت   

برای راه اندازی ، به دو باطری نیاز داریم . یکی برای تغذیه آیسی و دیگری برای تغذیه موتور ها ، منفی دو باطری را با سیم به هم وصل می کنیم  و آن را «زمین» می نامیم  یعنی مقدار آن صفر ولت ، فرض می شود . دقت شود  باطری تغذیه موتور ، دارای ولتاژی برابر با ولتاژ موتور  و دارای قابلیت جریان دهی بیشتر یا مساوی با جریان مورد نیاز  دو موتور باشد . همچنین ولتاژ باطری تغذیه آی سی باید بین 4/5 تا 7 ولت باشد . برای جلوگیری از سوختن آی سی باید پایه های 2 و 3 و 14 و 15 را با استفاده از دیود محافظت کنیم یعنی به هر یک از پایه ها دو دیود وصل می نماییم . کاتد دیود اول را ( قسمتی که خط دارد ) به سر مثبت باطری تغذیه موتور ، و آند دیود اول را به پایه آیسی وصل می نماییم  و کاتد دیود دوم را به پایه آیسی و آند دیود دوم را به زمین وصل می نماییم ( مطابق شکل ) . بهتر است دو سر پایه ورودی موتور را با یک خازن بدون قطب پلاستیکی ظرفیت بالا ، به هم وصل نمایید . سپس طبق آن چه در زیر آمده پایه ها را وصل می نماییم .



پایه شماره یک CURRENT SENSING A

این پایه را  به زمین ( منفی باطری ) وصل می نماییم .

پایه شماره دو  OUT PUT 1 

این پایه را به یک سر ورودی پایه ی موتور اول وصل می نماییم . ( حفاظت توسط دو دیود فراموش نشود)

پایه شماره سه OUT PUT 2

این پایه را به  سر دیگر پایه ی ورودی موتور اول وصل می نماییم . ( حفاظت توسط دو دیود فراموش نشود)

پایه شماره چهار   SUPPLY VOLTAGE VS

این پایه را به سر مثبت باطری تغذیه موتور وصل می نماییم .

پایه شماره پنج INPUT 1

این پایه را به یکی از پایه های کنترلر وصل می نماییم .

پایه شماره شش ENABLE A

این پایه را به یکی از پایه های کنترلر وصل می نماییم .

پایه شماره هفت INPUT 2

این پایه را به یکی از پایه های کنترلر وصل می نماییم .

پایه شماره هشت GND

این پایه را به زمین ( منفی باطری ) وصل می نماییم .

پایه شماره نه LOGIC SUPPLY VOLTAGE VSS

این پایه را به سر مثبت باطری تغذیه آی سی وصل می نماییم .

پایه شماره ده INPUT 3

این پایه را به یکی از پایه های کنترلر وصل می نماییم .

پایه شماره یازده ENABLE B

این پایه را به یکی از پایه های کنترلر وصل می نماییم .

پایه شماره دوازده INPUT 4

این پایه را به یکی از پایه های کنترلر وصل می نماییم .

پایه شماره سیزده OUT PUT 3

این پایه را به یک سر ورودی پایه ی موتور دوم وصل می نماییم . ( حفاظت توسط دو دیود فراموش نشود)

پایه شماره چهارده OUT PUT 4

این پایه را به سر دیگر ورودی پایه ی موتور دوم وصل می نماییم . ( حفاظت توسط دو دیود فراموش نشود)

پایه شماره پانزده CURRENT SENSING B

این پایه را به زمین ( منفی باطری ) وصل می نماییم .



   
کنترل موتور

اکنون می توانید با نوشتن برنامه در کنترلر (میکروکنترلر یا رایانه یا .... ) موتور را به وسیله 6 پایه کنترل نمایید نحوه کار موتور در جدول زیر آمده است .

   

 
نویسنده محسن جعفرزاده

زکات علم نشر آن است .

منبع : سایت تخصصی مهندسی رباتیک  www.robotics-engineering.ir


===================================================================

سلام
ممنون از مطالب بسیار خوبتون
من یه سوال داشتم 
مداری که من وصل کردم دقیقا عین همین هست و کاملا هم کار میکنه ولی یه مشکلی که داره اینه که همش L298 میسوزه 
انگار زیاد آمپر میکشه , زود داغ میکنه( سینک هم داره) بعد هم سرعت موتور ها کم میشه و LEDها کم نور میشن انگار نیمه سوز میشن .
وقتی l298 رو عوض میکنم خوب میشه 
نمیدونم چه کار کنم که جریان زیادی نکشه 
اگه میشه کمکم کنید
(به پایه 9 , 10v میدم یعنی میشه زیاد باشه؟)

موتور هاتون چه قدر جریان نیاز دارند؟ اندازه ی موتور با باری که روش هست متناسبه؟
وقتی موتور ها به مدار وصل نیستند بازم داغ میشه؟اگر نه مشکل از متناسب نبودن موتور هاست.

شما دیود رو وصل کردید؟جهت دیود رو نگاه کنید ببینید برعکس نیست؟اگه نبود یک ولت متر یا آمپر متر بگذار ببین چه قدر جریان میکشه؟

اگر دیود ها رو برعکس بزنید ,دیود ها داغ میشند نه درایور.

========================================

من که توصیه می کنم 298 استفاده نکنید فقط 6203 اما با این حال اگه دوستان اصرار داشتند بگن یه آموزش ساده بذارمک که راحت 

مدارشون رو راه بندازن


اگر دوستان می خوان از شکل بالا به عنوان مرجع استفاده کنند حواسشون باشه که مقاومت پایه sense رو مثل شکل 100 اهم نذارن که کلا موتور حرکت نخواهد کرد. چون افت ولتاژ روی این مقاومت مثلا به ازای 100 میلی آمپر میشه 10 ولت که اگه مدار داخلی درایور رو نگاه کنید متوجه میشید کلا سیستم تعطیل میشه.
من پیشنهاد میدم دو تا مقاومت 1 اهم توان بالا رو به صورت موازی استفاده کنید.


مدار زیر یکی از بهترین جایگزین های l298 است

کد: [انتخاب]
http://roboticseng.persiangig.com/image/h%20bridge.BMP

جهت جریان تا 5 آمپر ترانزیستور های دوقطبی را TIP127 قرار بدهید
جهت جریان تا 10 آمپر ترانزیستور های دوقطبی را TIP147 قرار بدهید

ماسفت را یکی از مدل های زیر قرار بدهید
IRL2505
IRL1004
IRL3103
IRL3713



سلام 
 هیچ نیازی به دیود نیست با هر موتور  یه خازن سرامیکی موازی کنید هیچ مقاومت و یا چیز دیگه هم بهش وصل نکنید خیلی خوب جواب میده اصلا هم نمیسوزه
فقط وقتی روشن است بهش دست نزنید که ممکنه بسوزه اونم اگه بدنه را به پایه زمینش وصل کرده باشید این دستم بذارید نمیسوزه



میتونید بین میکرو و درایور بافر قرار بدید
ولی من تا حالا این مشکل رو نداشتم
شما خازن تغذیه رو چند قرار دادین؟


راهنمای پایه ها : 

1 و 15 : میتونید با مقاومت نیم اهم بزنید به منفی تا مقاومت ها به عنوان فیوز از آی سی حفاظت کنن!! (طبق دیتاشیت) یا مستقیم به زمین!
2 و 3 : خروجی های موتور یک 
4 : ورودی تغذیه موتور ها (هر ولتاژی به این پایه برسونید موقع روشن شدن موتور ها به اونا هم همین ولتاژ میرسه!!)
5 و 7 : ورودی های موتور یک برای مشخص کردن جهت (به 5 یک و به 7 صفر بدی تو یک جهت و اگه به 5 صفر و به 7 یک بدی تو جهت دیگه میچرخه و اگه به هردو 1 بدی حکم ترمز داره )
6 : اگه میخواین سرعت موتور یک رو با میکرو کنترل کنید بدید به خروجی PWM میکرو یا اگر نه بدید به مثبت 5 ولت یا سطح منطقی 1
8 : منفی
9 : منقطی 1 یا مثبت 5 ولت
10 و 12 : ورودی های موتور دو برای مشخص کردن جهت (به 10 یک و به 11 صفر بدی تو یک جهت و اگه به 10 صفر و به 11 یک بدی تو جهت دیگه میچرخه و اگه به هردو 1 بدی حکم ترمز داره )
11 : اگه میخواین سرعت موتور دو رو با میکرو کنترل کنید بدید به خروجی PWM میکرو یا اگر نه بدید به مثبت 5 ولت یا سطح منطقی 1
13 و 14 : خروجی های موتور دو


دوستان بهترین مدار توی دیتاشیت هست.
شخصا بالای 15 بار بستم و جواب گرفتم.
l6203 صد در صد خازنم میخواد.l298 اگر نباشه هم باید کار کنه(تجربی)


  • ShahBaz

موتور الکتریکی (الکتروموتور)

ShahBaz | چهارشنبه, ۲۹ مهر ۱۳۹۴، ۱۰:۱۷ ق.ظ

مقدمه

یک موتور الکتریکی (الکتروموتور)، الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد ، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکتروستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.

ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای ، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور روتور به روتور اعمال می‌شود، می‌گردد.

 

اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) روتور و بخش ثابت استاتور خوانده می‌شود. روتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین ، هر کدام از بخشهای روتور یا استاتور می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیتهایی را در مدارس استفاده می‌کنند.

انواع موتورهای الکتریکی

موتورهای DC

یکی از اولین موتورهای دوار ، اگر نگوییم اولین ، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطه‌ور بود، می‌شد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور می‌کرد، سیم حول آهنربا به گردش در می‌آمد و نشان می‌داد که جریان منجر به افزایش یک میدان مغناطیسی دایره‌ای اطراف سیم می‌شود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده می‌شود، اما گاهاً بجای ماده سمی جیوه ، از آب نمک استفاده می‌شود.

موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی ، بستگی دارد.

سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم پیچ) در سیم پیچی موتور یا با داشتن یک منبع ولتاژ متغیر ، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای ترکشن (کششی) نظیر لکوموتیوها استفاده می‌کنند.

اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبکها و کموتاتور ، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبکها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا می‌کنند. اتصال ناقص الکتریکی نیز تولید نویز الکتریکی در مدار متصل می‌کند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین می‌روند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچها در بیرون به یک طراحی بدون جاروبک می‌رسیم.

موتورهای میدان سیم پیچی شده

آهنرباهای دائم در (استاتور) بیرونی یک موتور DC را می‌توان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) می‌توانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. می‌توانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر ، جریان میدان را کمتر هم کنیم. این تکنیک برای ترکشن الکتریکی و بسیاری از کاربردهای مشابه آن ایده‌آل است و کاربرد این تکنیک می‌تواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود.

موتورهای یونیورسال

یکی از انواع موتورهای DC میدان سیم پیچی شده موتور ینیورسال است. اسم این موتورها از این واقعیت گرفته شده است که این موتورها را می‌توان هم با جریان DC و هم AC بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه AC کار می‌کنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور DC میدان سیم پیچی شده به جریان متناوب وصل می‌شود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) همزمان تغییر می‌کند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان AC سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل DC خالص خواهد بود.

مزیت این موتورها این است که می‌توان تغذیه AC را روی موتورهایی که دارای مشخصه‌های نوعی موتورهای DC هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعتهای بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد می‌شود و در نتیجه این موتورها به ندرت در صنایع مشاهده می‌شوند، اما عمومی‌ترین موتورهای AC در دستگاههایی نظیر مخلوط کن و ابزارهای برقی که گاهاً استفاده می‌شوند، هستند.

موتورهای AC

 موتورهای AC تک فاز:

معمولترین موتور تک فاز موتور سنکرون قطب چاکدار است، که اغلب در دستگاه هایی بکار می رود که گشتاور پایین نیاز دارند، نظیر پنکه‌های برقی ، اجاقهای ماکروویو و دیگر لوازم خانگی کوچک. نوع دیگر موتور AC تک فاز موتور القایی است، که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس بکار می‌رود. عموماً این موتورها می‌توانند گشتاور راه اندازی بزرگتری را با استفاده از یک سیم پیچ راه انداز به همراه یک خازن راه انداز و یک کلید گریز از مرکز ، ایجاد کنند.

هنگام راه اندازی ، خازن و سیم پیچ راه اندازی از طریق یک دسته از کنتاکتهای تحت فشار فنر روی کلید گریز از مرکز دوار ، به منبع برق متصل می‌شوند. خازن به افزایش گشتاور راه اندازی موتور کمک می‌کند. هنگامی که موتور به سرعت نامی رسید، کلید گریز از مرکز فعال شده ، دسته کنتاکتها فعال می‌شود، خازن و سیم پیچ راه انداز سری شده را از منبع برق جدا می‌سازد، در این هنگام موتور تنها با سیم پیچ اصلی عمل می‌کند.

 موتورهای AC سه فاز:

برای کاربردهای نیازمند به توان بالاتر، از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می‌شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان ، استفاده می‌کنند. اغلب ، روتور شامل تعدادی هادیهای مسی است که در فولاد قرار داده شده‌اند. از طریق القای الکترومغناطیسی میدان مغناطیسی دوار در این هادیها القای جریان می‌کند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده و موجب می‌شود که موتور در جهت گردش میدان به حرکت در آید.

این نوع از موتور با نام موتور القایی معروف است. برای اینکه این موتور به حرکت درآید بایستی همواره موتور با سرعتی کمتر از فرکانس منبع تغذیه اعمالی به موتور ، بچرخد، چرا که در غیر این صورت میدان متعادل کننده‌های در روتور ایجاد نخواهد شد. استفاده از این نوع موتور در کاربردهای ترکشن نظیر لوکوموتیوها ، که در آن به موتور ترکشن آسنکرون معروف است، روز به روز در حال افزایش است. به سیم پیچهای روتور جریان میدان جدایی اعمال می‌شود تا یک میدان مغناطیسی پیوسته ایجاد شود، که در موتور سنکرون وجود دارد، موتور به صورت همزمان با میدان مغناطیسی دوار ناشی از برق AC سه فاز ، به گردش در می‌آید. موتورهای سنکرون را می‌توانیم به عنوان مولد جریان هم بکار برد.


سرعت موتور AC در ابتدا به فرکانس تغذیه بستگی دارد و مقدار لغزش ، یا اختلاف در سرعت چرخش بین روتور و میدان استاتور ، گشتاور تولیدی موتور را تعیین می‌کند. تغییر سرعت در این نوع از موتورها را می‌توان با داشتن دسته سیم پیچها یا قطبهایی در موتور که با روشن و خاموش کردنشان سرعت میدان دوار مغناطیسی تغییر می‌کند، ممکن ساخت. به هر حال با پیشرفت الکترونیک قدرت می توانیم با تغییر دادن فرکانس منبع تغذیه ، کنترل یکنواخت تری بر روی سرعت موتورها داشته باشیم.

 موتورهای پله‌ای

نوع دیگری از موتورهای الکتریکی موتور پله‌ای است، که در آن یک روتور درونی ، شامل آهنرباهای دائمی توسط یک دسته از آهنرباهای خارجی که به صورت الکترونیکی روشن و خاموش می‌شوند، کنترل می‌شود. یک موتور پله‌ای ترکیبی از یک موتور الکتریکی DC و یک سلونوئید است. موتورهای پله‌ای ساده توسط بخشی از یک سیستم دنده‌ای در حالتهای موقعیتی معینی قرار می‌گیرند، اما موتورهای پله‌ای نسبتا کنترل شده ، می‌توانند بسیار آرام بچرخند. موتورهای پله‌ای کنترل شده با کامپیوتر یکی از فرمهای سیستمهای تنظیم موقعیت است، بویژه وقتی که بخشی از یک سیستم دیجیتال دارای کنترل فرمان یار باشند.

 موتورهای خطی

یک موتور خطی اساساً یک موتور الکتریکی است که از حالت دوار در آمده تا بجای اینکه یک گشتاور (چرخش) گردشی تولید کند، یک نیروی خطی توسط ایجاد یک میدان الکترومغناطیسی سیار در طولش ، بوجود آورد. موتورهای خطی اغلب موتورهای القایی یا پله‌ای هستند. می‌توانید یک موتور خطی را در یک قطار سریع السیر ماگلیو مشاهده کنید که در آن قطار روی زمین پرواز می‌کند.

موتور جریان متناوب یک ماشین الکتریکی است که با جریان متناوب تغذیه شده و توان الکتریکی را تبدیل به توان مکانیکی چرخشی یا خطی می نماید. موتور جریان متناوب AC از دو قسمت اصلی تشکیل شده:

*استاتور: هسته خارجی و معمولاً ثابت که با استفاده از جریان جریان متناوب میدان دوار ایجاد می‌کند.

*روتور: هسته داخلی و متحرک که به محور خروجی متصل شده و با توجه به میدان دوار تولید شده توسط استاتور، گشتاور تولید می‌کند.

از نظر نوع روتور مورد استفاده قرار گرفته در موتورها، موتورهای جریان متناوب به دو صورت طبقه‌بندی می‌شوند:

*موتور سنکرون یا هم‌زمان که در آن روتور دقیقاً با سرعت میدان دوار می‌چرخد. در این نوع موتورها میدان الکتریکی روتور به وسیله یک منبع خارجی تامین می‌شود.

*موتور اسنکرون یا القایی که در آن میدان الکتریکی روتور از القای میدان استاتور پدید می‌آید.

تاریخچه

در ۱۸۸۲ نیکولا تسلا اصول میدان مغناطیسی دوار را پایه گذاری کرد و راه را برای استفاده از میدان دوار به عنوان یک نیروی مکانیکی باز کرد. در سال ۱۸۸۳ او از این اصول برای طراحی یک موتورالقایی دو فاز استفاده کرد. در ۱۸۸۵ «گالیلئو فراریس» (Galileo Ferraris) مستقلاً تحقیقاتی را در این باره آغاز کرد و در ۱۸۸۸ نتایج تحقیقات خود را در قالب مقاله‌ای به آکادمی‌سلطنتی علوم در تورین ایتالیا ارایه داد.

حرکتی که نیکولا تسلا در ۱۸۸۸ آغاز کرد چیزی بود که امروزه برخی از آن به عنوان «انقلاب صنعتی دوم» یاد می‌کنند، چراکه این حرکت به تولید آسانتر انرژی الکتریکی و همچنین امکان انتقال انرژی الکتریکی در طول مسافت‌های طولانی انجامید. قبل از اختراع موتورهای جریان متناوب به وسیله تسلا موتورها به وسیله حرکت دائم یک هادی در میان میدان مغناطیسی ثابت به حرکت در می‌آمدند. تسلا به این نکته اشاره کرد که می‌توان کلکتورهای موتور را حذف کرد به طوریکه موتور به وسیله میدانی دوار به حرکت درآید. تسلا بعدها موفق به کسب حق امتیاز شماره ۰٫۴۱۶٫۱۹۴ ایلات متحده برای اختراع موتور خود شد. این موتور که در بسیاری از عکس‌های تسلا نیز هست نوع خاصی از موتور القایی بود.

در سال ۱۸۹۰ میخایل اسیبوویچ یک موتور سه فاز روتور قفسی اختراع کرد. این نوع موتور امروزه به طور وسیعی برای کاربردهای گوناگون استفاده می‌شود

موتور جریان متناوب سه فاز القایی

در بیشتر محل‌های که سیستم تغذیه سه فاز (یا چند فاز) در دسترس است از این گونه موتورها استفاده می‌شود به ویژه در قدرت‌های بالاتر استفاده از این موتورها بسیار رایج است. اختلاف زاویه بین هر یک از سه فاز تغذیه کننده باعث به وجود آمدن یک میدان دوار متعادل می‌شود که دارای سرعتی ثابت است.

در یک موتور القایی میدان مغناطیسی دوار موجب القای یک جریان در هادی‌های روتور می‌شود. این جریان به طور متقابل میدان مغناطیسی را به وجود می‌آورد که موجب چرخش روتور در جهت میدان مغناطیسی دوار خواهد شد. اما نکته‌ای که باید به آن توجه داشت این است که روتور همیشه باید با سرعتی کمتری از سرعت استاتور بچرخد و به عبارت دیگر در صورتی که سرعت روتور و میدان دوار یکسان باشد جریانی در روتور القا نخواهد شد.

موتورهای القایی در صنایع به طور گسترده‌ای مورد استفاده قرار می‌گیرند اما قدرت‌های حدود ۵۰۰ کیلووات خیلی بیشتر رایج هستند. موتورهای القایی معمولاً با اندازه‌های استانداردی ساخته می‌شوند (البته این استانداردها در اروپا و آمریکا متفاوت است) این استانداردگذاری در ساخت موتورها تقریباً همه آنها را قابل تعویض می‌کند. توان برخی از موتورها القایی بسیار بزرگ تا ده‌ها هزار کیلو وات می‌رسد و از جمله استفاده‌های این موتورها می‌توان به کمپرسور های خطوط لوله و تونل‌های باد اشاره کرد. برای این موتورها دو نوع مختلف از روتور وجود دارد:

*روتور قفسی (قفس سنجابی)

*روتور سیم‌پیچی شده

انواع موتورهای سه فاز ولتاژ متناوب

موتور القایی روتور قفسی | موتور القایی سیم پیچی شده | موتور سنکرون قطب برجسته | موتور سنکرون قطب صاف‌ |

روتور قفسی

بیشتر موتورهای جریان متناوب از این نوع روتورها استفاده می‌کنند به طوری که می‌توان گفت همه موتورهای خانگی و موتورهای سبک صنعتی از این نوع روتورها استفاده می‌کنند. روتور قفسی یا قفس سنجابی نام خود را به خاطر شکلش گرفته؛ دو رینگ در دو انتهای روتور که به وسیله میله‌های به هم وصل شده‌اند شکلی تقریبً شبیه یک قفس تشکیل می‌دهند. این میله‌ها عموماً از جنس آلمینیوم یا مس هستند و در بین ورقه‌های لایه لایه شده فولادی ریخته شده‌است. بیشتر جریان القا شده در روتور از میان این میله‌ها عبور می‌کند چراکه ورق‌های لایه لایه فولادی به علت لاک زنی شدن دارای مقاومت الکتریکی زیادی هستند. ولتاژ ایجاد شده در بین حلقه‌ها بسیار پایین است اما جریان جاری بسیار زیاد است و این به دلیل مقاومت پایین این میله‌هاست. در موتورهایی که راندمان بالاتری دارند از مس برای تولید روتور استفاده می‌شوند چراکه مقاومت الکتریکی این فلز کمتر است.

در هنگام کار، موتور القایی شبیه یک ترانسفورماتور عمل می‌کند که استاتور اولیه و روتور ثانویه آن محسوب می‌شود. زمانیکه روتور با سرعت میدان دوار نمی‌چرخد جریان القا شده در روتور زیاد است، این جریان زیاد میدان مغناطیسی ایجاد می‌کند که با افزایش سرعت روتور سرعت آن را هرچه بیشتر به سرعت استاتور نزدیک می‌کند. یک موتور القایی روتور قفسی در هنگام بی باری (سرعت برابر با میدان دوار) تنها مقدار کمی‌انرژی الکتریکی برای جبران تلفات مکانیکی (اصطکاک) و تلفات مسی (تلفات ایجاد شده به دلیل مقاومت هادی‌های الکتریکی) مصرف می‌کند. اما زمانی که بار موتور افزایش می‌یابد میزان جریان جاری در روتور افزایش می‌یابد (برای جبران فشار وارده به محور موتور) و به این ترتیب موتور مانند یک ترانسفورماتور عمل می‌کند چراکه با افزایش جریان در ثانویه جریان اولیه نیز افزایش می‌یابد. این دلیل کاهش یافتن نور لامپ‌ها در هنگام روشن شدن موتورهای القایی است البته زمانی که این موتورها به هواکش‌ها متصل شده‌اند این اتفاق نمی‌افتد.

موتورهای القایی که از حرکت وامانده‌اند (به دلیل بار زیاد یا گیر کردن محور) جریانی بسیار زیاد مصرف خواهند کرد چراکه تنها عامل محدود کننده جریان در چنین حالتی مقاومت ناچیز هادی‌های استاتور و روتور خواهد بود و در صورتی که این جریان به وسیله عاملی خارجی مهار نشود موتور و تجهیزات تغذیه کننده آن آسیب خواهند دید.

روتور سیم‌پیچی

زمانی که مقاومت سر راه روتور قابل تغییر باشد، روتور را سیم‌پیچی شده می‌نامند. یکی از کاربردهای این نوع روتورها در موقعیت‌هایی است که به سرعت متغیر نیاز است. در این روتورها سم‌پیچ روتور طوری پیچیده شده که تعداد قطب‌ها در روتور و استاتور برابر هستند و خروجی هر فاز از روتور به طور جداگانه و به وسیله حلقه‌های لغزنده از موتور خارج شده‌است. این حلقه‌های لغزنده ارتباط الکتریکی خود با محور موتور را معمولاً به وسیله کربن ایجاد می‌کنند و پس از خارج شدن از موتور به یک مقاومت متغیر خارجی وصل می‌شوند.

در مقایسه با موتورها روتور قفسی، موتورهای روتور سیم‌پیچی گران‌تر هستند و به علت استهلاک حلقه‌های لغزان دارای هزینه تعمیر و نگه‌داری بالاتری نیز هستند، قبل از تولید تجهیزات کنترل سرعت الکترونیکی این موتورها بهترین راه برای کنترل سرعت بودند همچنین این موتورها می‌توانند در لحظه شروع به کار گشتاور بالاتری داشته باشند. استفاده از کنترل کننده‌های ترانزیستوری فرکانس راهی مناسب برای کنترل دور موتورهای جریان متناوب است و این از تمایل برای استفاده از موتورهای روتور سیم‌پیچی کاسته‌است.

راه‌های مختلفی برای راه‌اندازی موتورهای جریان متناوب استفاده می‌شود که اغلب این راه‌ها بر کاهش جریان هجومی‌در هنگام راه‌اندازی و همچنین افزایش گشتاور راه‌اندازی تکیه می‌کنند. این گونه موتورها تنها با وصل ترمینال‌های ورودی به برق شهری با ولتاژ استاندار شروع به کار می‌کنند و (بر خلاف برخی موتورهای جریان مستقیم) نیاز به روش راه‌اندازی ویژه‌ای ندارند. یکی دیگر از روش‌های کاهش جریان راه‌اندازی موتور، کاهش ولتاژ سیم‌پیچ‌ها در لحظه راه‌اندازی است که این کار به وسیله سری کردن سیم‌پیچ‌های بیشتر یا استفاده از اتوترانسفورماتور،تریستور و یا دیگر تجهیزات کاهش ولتاژ صورت می‌گیرد. روشی دیگر برای کاهش ولتاژ سیم‌پیچ‌ها در لحظه راه‌اندازی تغییر طرز قرار گرفتن سیم پیچ‌ها و استفاده از کلیدهای ستاره-مثلث است. در این حالت ابتدا موتور را در حالت ستاره راه اندازی کرده و پس از رسیدن به دور نامی، ترتیب قرار گرفت سیم‌پیچ‌ها را به وسیله کلید تغییر داده و به حالت مثلث می‌برند. این روش در اروپا رایج‌تر از آمریکای شمالی است.

سرعت موتور آسنکرون

سرعت در یک موتور جریان متناوب به دو عامل فرکانس و تعداد قطب‌های موتور بستگی دارد و از فرمول زیر به دست می‌آید:

که:

NS سرعت میدان دوار یا سرعت سنکرون (r. p. m)

f فرکانس منبع جریان متناوب (هرتز)

P تعداد قطب‌های سیم‌پیچی به ازای هر فاز است.

میزان سرعت واقعی روتور همیشه از سرعت میدان دوار کمتر است. این اختلاف سرعت را لغزش می‌نامند و با S (مخفف slip به معنی لغزش) نمایش می‌دهند. در حالت بی‌باری سرعت روتور به سرعت سنکرون خیلی نزدیک خواهد بود و در بار نامی‌موتور لغزشی بین ۲ تا ۳ درصد خواهد داشت که در برخی موتورها این لغزش تا ۷٪ نیز می‌رسد. میزان لغزش در یک موتور جریان متناوب از رابطه زیر به دست می‌آید:

که:

Nr سرعت روتور (r. p. m)

S میزان لغزش است که می‌تواند عددی بین ۱ و ۰ باشد..

موتور جریان متناوب سه فاز سنکرون

اگر خروجی قطب‌های روتور به وسیله کلکتورها از موتور خارج شده و به یک منبع خارجی وصل شود به طوری که روتور نیز به نوبه خود میدانی جداگانه و مداوم را ایجاد کند به موتور موتور سنکرون یا هم‌زمان گفته می‌شود. سرعت چرخش روتور در موتورهای سنکرون همواره برابر سرعت میدان دوار است و به همین دلیل این موتورها را هم‌زمان می‌نامند.

از این موتورها می‌توان به عنوان یک ژنراتور جریان متناوب نیز استفاده کرد.

امروزه موتورهای سنکرون را اغلب به وسیله کنترل کننده‌های ترانزیستوری فرکانس راه‌اندازی می‌کنند. این موتورها همچنین می‌توانند به صورت یک موتور القایی نیز راه‌اندازی شوند به این صورت که در روتور این موتورها از میله‌های هادیی شبیه روتورهای قفسی استفاده می‌شود و پس از راه اندازی، این قسمت روتور خود به خود از مدار خارج می‌شود به این صورت که پس از رسیدن موتور به دور نامی‌مقدار ناچیزی جریان در قفس رتور القا می‌شود و بدین ترتیب تقریباً از مدار خارج می‌شود.

یکی از کاربردهای موتورهای سنکرون اصلاح ضریب توان است. در مراکز صنعتی تقریباً تمامی‌بارها (به جز موتورهای سنکرون پر تحریک) از انرژی الکتریکی به صورت پس فاز استفاده می‌کنند. بارهای پس فاز موجب به وجود آمدن اختلاف فاز در مدار شده و ضریب توان مدار را کاهش می‌دهند که این می‌تواند موجب به وجود آمدن تلفات اضافی در طول خطوط شود. به دلیل خصوصیت خاص موتورهای سنکرون می‌توان از آنها برای اصلاح ضریب توان نیز استفاده کرد، چراکه در صورتی که موتور سنکرون در حالت پر تحریک کار کند تقریباً مانند یک بار خازنی عمل کرده و از انرژی الکتریکی به صورت پیش فاز استفاده می‌کند و به این ترتیب می‌توان از یک موتور سنکرون به جای خازن‌های اصلاح ضریب توان استفاده کرد. این خصوصیت موتورهای سنکرون باعث شده که با وجود مشکلات مربوط به راه‌اندازی آنها، استفاده از آنها هنوز رایج باشد.

برخی از بزرگ‌ترین موتورهای جریان متناوب در نیروگاه‌های آب تلمبه‌ای مورد استفاده قرار می‌گیرند چراکه این موتورها به راحتی می‌توانند نقش ژنراتور را ایفا کنند و به این ترتیب در ساعات کم مصرف انرژی الکتریکی به صورت موتور عمل کرده و آب را به مخزن پر ارتفاعی پمپ کنند و سپس در ساعات پر مصرف با پایین آمدن آب به صورت ژنراتور عمل کرده و از شبکه پشتیبانی کنند. در نیروگاه آب تلمبه‌ای Bath County در ویرجینیای آمریکا از شش ژنراتور سنکرون ۳۵۰ مگاواتی استفاده شده‌است که در زمان پمپ، هرکدام می‌توانند توانی برابر ۵۶۳۴۰۰ اسب بخار (۴۲۰۱۲۷ وات) تولید کنند.

راه اندازی

موتورهای آسنکرون با توجه به قدرت و ولتاژ آن به طرق مختلف راه اندازی می‌شوند و با توجه به ‏اینکه موتور در لحظه شروع به کار جریان زیادی از منبع الکتریکی می‌کشد و این جریان زیاد علاوه بر اینکه به خود ‏موتور صدمه می‌زند به مصرف کننده‌های دیگری که از این خط مشترک تغذیه می‌شوند لطمه زده و کار آنها را ‏مختل می‌سازد‎. ‎ موتور آسنکرون معمولاً به روشهای زیر راه اندازی می‌شود در نتیجه جریان راه اندازی‌ کم می‌شود‏‎:

به طور مستقیم‎

برای‌ موتورهایی که بزرگ نیستند و‌ آمپر زیادی از شبکه نمی‌‏کشند بوسیله یک کلید سه قطبی به شبکه متصل می‌شوند‎.

توسط کلید یا مدار ستاره–مثلث

ابتدا ولتاژ اولیه را که بر هر فاز متصل می‌شود،‌ را کم مى کنیم سپس ‏وقتی که موتور به دور نرمال خود رسید ولتاژی را که به هر فاز می‌رسد زیاد می‌کنیم. بنابراین در لحظه اول کلید به حالت ستاره بوده یعنی ولتاژ دو سر هر فاز به‎ u/√3 ‎تقلیل می‌یابد ‏در نتیجه موتور با توان 3/1 توان نامی‌خود کار می‌کند‏‎. استعمال کلید روی انواع موتورها با روتور قفسه‌ای یا روتور سیم پیچی امکان پذیر است. ولی در ‏موتورهایی که با بار زیاد کار می‌کنند از کلید برای راه اندازی استفاده نمی‌شود. چون گشتاور ‏مقاوم بار زیاد است‎.

توسط کمپانساتور

این وسیله راه اندازی که اتوترانسفورماتور کاهنده است بین موتور ‏و شبکه قرار می‌گیرد. این طریق راه اندازی به دلیل اینکه جریان شروع به کار و گشتاور شروع به ‏کار هر دو به یک نسبت پایین می‌آیند خیلی خوب است. ولی چون هزینه آن گران است فقط در ‏موتورهایی که قدرت زیاد دارند استفاده می‌شوند‎.

اضافه کردن مقاومت در مدار روتور

برای جلوگیری از ‏عبور جریان زیاد در موقع راه اندازی موتور می‌توان مقاومت هایی به طور سری سر راه سیم پیچی ‏های موتور قرار دارد. و به تدریج که موتور دور می‌گیرد دسته مقاومتهای راه انداز را به طرف چپ ‏حرکت داده در این صورت کم کم مقاومتها از سر راه مدار خارج می‌شود‎. این طریق راه اندازی به دلیل تلفات انرژی در مقاومتها زیاد و نیروی کشش در لحظه شروع به کار کم ‏، استعمال کمی‌دارد‎.

اضافه کردن مقاومت در مدار استاتور

تمام ‏مقاومتهای راه انداز را سر راه سیم پیچی روتور قرار داد. بدین وسیله مقاومت مدار سیم پیچی روتور ‏را به حداکثر مقدار خود میرسانند و سپس استاتور را به شبکه برق وصل می‌کنند. مقاومت رئوستای ‏روتور به تدریج از مدار خارج می‌شود.

سروو موتورهای دو فاز جریان متناوب

یک سروو موتور جریان متناوب دارای یک روتور قفسی است و سیم‌پیچ آن شامل دو قسمت است: ۱) سیم پیچ اصلی ۲) سیم پیچ کمکی که از آن برای به وجود آوردن میدان دوار استفاده می‌شود. در این موتورها مقاومت روتور بالا است و بنابراین منحنی گشتاور-دور این موتورها تقریباً خطی است. به طور کلی این موتورها، موتورهایی پر سرعت و با گشتاور پایین هستند و معمولاً قبل از وصل به بار سرعت آنها به وسیله وصل به چرخ‌دنده‌ها کاهش می‌یابد.

موتور با قطب سایه دار

برخی موتورهای جریان متناوب، دارای قطب سایه‌دار (چاک دار) هستند. از این قطب برای ایجاد گشتاور راه‌اندازی در موتور استفاده می‌شود. نمونه این موتورها در فن‌های الکتریکی کوچک و برخی پمپ‌های کوچک و برخی دیگر از موتورهای توان پایین دیده می‌شود. در این موتورها از یک سیم پیچ کوچک و با سطح مقطع پایین با نام سیم‌پیچ سایه‌ای استفاده می‌شود به این صورت که قسمتی از هر قطب به وسیله این سیم‌پیچ پوشیده شده‌است. طرز کار این موتورها به این صورت است که با القای الکتریکی در سیم‌پیچ‌ها به علت خاصیت سلفی سیم‌پیچ‌های سایه‌ای، این سیم‌پیچ‌ها با تغییرات جریان مخالفت می‌کنند (قانون لنز) و بنابراین یک اختلاف اندک بین جریان در سیم پیچ اصلی و سیم‌پیچ سایه‌ای ایجاد می‌شود که موجب چرخش موتور شده و از قفل شدن موتور در لحظه راه‌اندازی جلوگیری می‌کند. با افزایش سرعت روتور نیاز به وجود قطب‌های کمکی از بین می‌رود چراکه به دلیل وجود اینرسی موتور به چرخش ادامه می‌دهد.

موتور القایی با انشقاق فاز

یکی دیگر از انواع موتورهای تک فاز القایی، موتور با انشقاق فاز است که نسبت به موتور با قطب سایه‌دار کاربردهای مهم‌تری دارد. از جمله کاربردهای این موتورها می‌توان به موتورهای مورد استفاده قرار گرفته در ماشین‌های لباسشویی و خشک‌کن‌ها اشاره کرد. در مقایسه با موتورهای با قطب سایه‌دار این موتورها گشتاور راه‌اندازی خیلی بیشتری دارند و این به دلیل استفاده از سیم‌پیچ راه انداز است. این سیم‌پیچ راه‌انداز معمولاً پس از راه‌اندازی کامل موتور به وسیله یک کلید گریز از مرکز از مدار خارج می‌شود.

در موتورهای انشقاق فاز، سیم‌پیچ راه انداز همیشه با مقاومت بیشتری نسبت به سیم‌پیچ اصلی ساخته می‌شود و به این ترتیب نسبت المان‌های سلفی و مقاومتی در هر سیم پیچ متفاوت است، همچنین تعداد دور سیم‌پیچ کمکی کمتر از سیم‌پیچ اصلی است که این موجب کاهش خاصیت سلفی این سیم‌پیچ می‌شود. بنابراین این سیم‌پیچ نسبت به سیم‌پیچ اصلی دارای مقاومت بیشتر و اندوکتانس کمتر است. کمتر بودن نسبت L به R موجب به وجود آمدن اختلاف فاز در دو سیم‌پیچ می‌شود که معمولاً بیشتر از ۳۰درجه نیست. این اختلاف فاز موجب چرخش موتور در لحظه راه‌اندازی می‌شود. پس از راه‌اندازی به علت وجود اینرسی موتور به چرخش خود ادامه می‌دهد و به این ترتیب نیازی به سیم‌پیچ کمکی نخواهد بود به همین دلیل سیم‌پیچ کمکی به وسیله کلید گریز از مرکز از مدار خارج می‌شود و به این ترتیب از ایجاد تلفات اضافی به وسیله سیم‌پیچ کمکی جلوگیری می‌شود.

موتورهای جریان متناوب با خازن راه‌انداز

در موتورهایی که از خازن برای راه اندازی استفاده می‌کنند از یک خازن که با سیم‌پیچ کمکی سری شده استفاده می‌شود. این خازن در واقع وظیفه ایجاد اختلاف فاز بین سیم‌پیچ‌ها را بر عهده دارد. اختلاف فاز ایجاد شده توسط خازن‌ها در لحظه راه‌اندازی خیلی بیشتر از نوع قبلی است و بنابراین میزان گشتاور راه‌اندازی این موتورها نیز بیشتر است و البته هزینه این موتورها نیز بیشتر است.

موتورهای خازنی با خازن ثابت

نوع دیگری از موتورهای جریان متناوب موتورها با خازن ثابت یا موتورهای PSC هستند. این موتورها دقیقاً مانند موتورهای خازنی که در بالا توضیح داده شد عمل می‌کنند با این تفاوت که فاقد کلید گریز از مرکز بوده و بنابراین خازن در این موتورها همواره در مدار است. موتورهای با خازن ثابت به طور گسترده‌ای در فن‌ها، دمنده‌ها و سیستم‌هایی که تغییر سرعت برای آنها مطلوب است استفاده می‌شوند. در برخی موارد که نیاز به استفاده از یک موتور سه فاز به صورت تک فاز است با اتصال یک خازن به یکی از فازها و سری کردن دوفاز دیگر می‌توان از موتور سه فاز به صورت تک فاز استفاده کرد که البته در این حالت گشتاور موتور کاهش می‌یابد.

موتور پولزیون

موتور پولزیون یا موتور دفع کننده نوعی موتور تک فاز جریان متناوب است. روتور این موتورها سیم‌پیچی شده و تا حدودی شبیه موتورهای یونیورسال هستند. در گذشته تعدادی از این موتورها ساخته می‌شد اما استفاده از موتورهای RS-IR (راه‌انداز دفع کننده-حرکت القایی) به نسبت رایج تر بود. موتورهای RS-IR دارای یک کلید گریز از مرکز هستند که پس از رسیدن به سرعت نامی‌تمام کلکتورها را به هم وصل کرده و روتور را به صورت یک روتور قفسی در می‌آورد بنابر این موتور در هنگام کار مانند یک موتور روتور قفسی عمل می‌کند. از موتورهای RS-IR در مواردی استفاده می‌شده که نیاز به وجود گشتاور راه‌اندازی بالا در دمای پایین و تنظیم ولتاژ اندک بوده. امروزه این نوع موتورها ساخته نمی‌شوند.

موتور سنکرون جریان متناوب تک فاز

موتورهای سنکرون تک فاز کوچک به جای ایجاد میدان مغناطیسی به وسیله یک منبع خارجی از آهنرباهای کوچک برای ایجاد میدان استفاده می‌کنند. بنابراین روتور این موتورها نیازی به جریان القا کننده نخواهد داشت. خصوصیت اصلی این موتورها سرعت ثابت آنهاست به طوریکه اغلب در وسایلی از آنها استفاده می‌شود که نیاز به سرعتی ثابت دارند. این موتورها در ساعت‌ها، دیسک گردان‌ها، ضبط صوت‌ها و برخی دیگر از تجهیزات دقیق مورد استفاده قرار می‌گیرد.

مشخصات الکتروموتور ها

مشخصاتی که روی پلاک الکتروموتور ها مینویسند برای استفاده بهینه در طراحی و راه اندازی صحیح بکار میرود و شامل نکاتی میشود که گاهی بی توجهی به آن باعث بهره بری کمتر و خسارت به تجهیزات الکتریکی میگردد .

لذا پلاک خوانی الکترو موتورها کمک زیادی به طراح و راه انداز برای طراحی مدار مربوطه و انتخاب صحیح کنتاکتور و بی متال و ... مینماید .

مشخصاتی که روی پلاک ها نوشته می شوند به طور معمول عبارتند از :

No: شماره ساخته شده توسط کارخانه

Type:شامل کلیه مشخصات فنی الکترو موتور که در کاتالوگ کارخانه موجود بوده و یا در مکاتبه با کارخانه باید به آن اشاره شود:

A=حداکثر جریان مجاز الکترو موتور را نشان میدهد که میزان جریان نباید بیشتر از مقدار فوق و بلکه

همیشه الکترو موتور طوری انتخاب شود که زیر مقدار فوق کار کند.

V = ولتاژ کاری الکترو موتور میباشد که نباید ولتاژ بیشتر و یا کمتر به سیم پیچهای الکترو موتور اعمال گردد

50 HZالکترو موتور باید در فرکانس 50 هرتز کار کند (برق ایران)

60 HZ الکترو موتور باید در فرکانس 60 هرتز کار کند (فرکانس برق برخی کشورها)

نکته: دور الکترو موتور ها با فرکانس ارتباط دارد لذا الکتروموتوری که در فرکانس 50 هرتز مثلا 1500 دور میباشد همین الکترو موتور در فرکانس 60 دورش دیگر 1500 نیست .

R.P. M= نشان دهنده دور الکترو موتور در یک دقیقه در روی شقت خروجی میباشد.

KW=مقدار توان الکترو موتور را نشان میدهد.

نکته : اگر روی پلاک الکترو موتوری   نوشته شده بود 380/220 V= معنی ان این است که این الکترو موتور در شبکه برق 110 ولت که برخی از کشورها استفاده میشود باید بصورت مثلث و در کشورهای که ولتاژ 220ولت ( ولتاژ بین یک فاز و نول) دارند مثل ایران باید بصورت ستاره بسته شود .

IP= میزان حفاظت الکترو موتور در مقابل گرد و غبار و .. و طبق جدول زیر میباشد.

 

انواع حفاظتها طبق استاندارد دین 40050

P00= باز بدون حفاظت در مقابل تماس با اجسام خارجی و أب

P10= محفوظ در مقابل تماس دست و اجسام بزرگ خارجی

P11= محفوظ در مقابل تماس دست و اجسام بزرگ خارجی - محفوظ در مقابل اب

P20= محفوظ در مقابل تماس انگشت و اجسام با وزن متوسط بدون حفاظ در مقابل اب

P21= محفوظ در مقابل تماس انگشت و اجسام با وزن متوسط - ضد اب

P22= محفوظ در مقابل تماس انگشت و اجسام با وزن متوسط –محفوظ در مقابل ترشح اب بطور عمودی یا

مایل با زاویه بیشتر از 30 درجه نسبت به افق

P30= محفوظ در مقابل تماس با ابزار ها و غیره و اجسام خارجی سبک وزن – بدون محافظت در مقابل اب

P31= محفوظ در مقابل تماس با ابزار ها و غیره و اجسام خارجی سبک وزن - ضد اب

P32= محفوظ در مقابل تماس با ابزار ها و غیره و اجسام خارجی سبک وزن - محفوظ در مقابل ترشح اب بطور عمودی یا مایل با زاویه بیشتر از 30 درجه نسبت به افق

P40= محفوظ در مقابل کلیه موارد فوق

 

مکانیزاسیون نگهداری و تعمیرات الکتروموتور ها با معرفی نرم افزار " دستیار "

1- آنالیز جریان

2- آنالیز ارتعاشات

3- ترموگرافی

4- آنالیز مدار موتور

5- آنالیز آلتراسونیک

6- تستهای الکتریکی

7- آنالیز روغن

در روش نت براساس شرایط ( CBM ) بصورت مراحل زیر همانطوریکه ملاحظه می شود نیاز به جمع آوری و سپس تجزیه و تحلیل داده های آماری می باشد .

 

1- آماده سازی

2- طراحی

3- استقرار و اجرا

4- بهبود سیستم

 

باتوجه به حجم اطلاعات ، نیاز به تجزیه و تحلیل آنها و ارائه گزارشات متنوع و بهنگام نیاز به مکانیزه نمودن نگهداری و تعمیرات الکتروموتورها بیش از پیش احساس می شود .

خوشبختانه اخیرا" یک شرکت ایرانی موفق به طراحی نرم افزار خاص الکتروموتورهای صنعتی شده است که علاوه بر تامین نیازهای فوق کاربرد بسیاری در کارگاههای سیم پیچی کارخانجات دارد . این نرم افزار که نام آن " دستیار " می باشد با توجه به نیاز کارخانجات در 5 سطح تهیه شده است تا همه صنایع کشور با توجه به تعدد و تنوع الکتروموتورهای خود بتوانند با حداقل هزینه از آن استفاده نمایند .

این نرم افزار با آموزش یکروزه برنامه ریزی نگهداری و تعمیرات الکتروموتورها و نرم افزار مربوطه جهت 10 نفر و خدمات پشتیبانی ارائه می گردد .

 

کلاس عایق بندی در الکتروموتور ها

انجمن بین المللی تولیدکنندگان تجهیزات الکتریکی ( NEMA ) عایق بندی موتورها را باتوجه به درجه حرارت موتور در محیطهای مختلف کاری در چهار کلاس A , B , F , H طبقه بندی نموده است :

موتورها عموما" در کلاس F و بندرت در کلاس A کار می کنند . قبل از شروع بکار موتور ، آنها تحت تاثیر دمای محیط اطراف خود قرار دارند که ما اصطلاحا" آن را دمای محیط " Temperature Ambient " می گوئیم .

در NEMA برای تمام کلاسهای عایق بندی دمای ابتدایی 40 درجه سانتیگراد با یک رنج حرارتی بصورت زیر استاندارد شده است :

وقتی موتور استارت می خورد ، دما افزایش می یابد . هر کلاسی یک دمای مجاز مشخصی دارد . ترکیبی از دمای محیط و دمای مجاز معادل ماکزیمم دمای سیم پیچها خواهدبود . بعنوان مثال در کلاس F ، با فاکتور سرویس 1 ، دما به اندازه 105 درجه می تواند افزایش یابد . بنابراین داریم که :

145= 40 + 105

Hot Spot : با یک بازه مجاز حرارتی ( مثلا" 10 درجه ) گرمترین نقطه در مرکز سیم پیچ را با این نام می شناسیم .

در کلاس F این بازه 10 درجه است . بنابراین مرکز سیم پیچ دارای بیشترین دمای مجاز 155 درجه خواهد بود . دمای کاری موتور در کارآیی و طول عمر کاری موتور بسیار مهم است . تا جائیکه 10 افزایش دما از بالاترین حد مجاز باعث کاهش عمرعایق بندی موتور به اندازه 50% می شود .

کارآیی موتور ( Effeciency ) : درحقیقت همان بازده موتور است و نشان دهنده این است که چه مقدار از انرژی داده شده به موتور به انرژی مکانیکی تبدیل می شود . هرچه این عدد به یک نزدیکتر باشد کارآیی موتور بیشتر و البته قیمت موتور بالاتر است . یک موتور 30 اسب بخار با کارآیی 93.6% در مقایسه با موتور مشابهی با کارآیی 83% ، انرژی کمتری مصرف می کند . در نتیجه حرارت کاری پائین تر ، طول عمر بیشتر ، و سطح نویز کمتری خواهد داست .

ارتباط بین تعداد قطب و دور موتورهای الکتریکی

معمولا" بعد از اعداد مربوط به سایز فریم موتور اعداد مربوط به تعداد قطب موتور می آید که در موتورها ( بخصوص زیمنس ) بصورت 4AA نشان داده می شود هد که منظور عدد 4 می باشد . لازم به یادآوری است که سرعت سنکرون موتور همان سرعت میدان مغناطیسی ( استاتور ) است که با Ns نمایش می دهند . بنابراین اگر فرکانس میدان مغناطیسی را با F و تعداد قطبهای موتور را با P دهیم خواهیم داشت :

Ns - 120 F / P

Ns = ( 120 x 50 / 2 ) = 3000 RPM

با افزایش تعداد قطب ، سرعت سنکرون و درنتیجه دور موتور کاهش می یابد . بنابراین طبق مطالب گفته شده ، در فرکانس 60 هرتز و 50 هرتز ( در ایران )جداول زیر را خواهیم داشت :

فرکانس 50 هرتز

سرعت سنکرون

تعداد قطب

3000

2

1500

4

1000

6

750

8

600

10

500

12

 

فرکانس 60 هرتز

سرعت سنکرون

تعداد قطب

3600

2

1800

4

1200

6

900

8

720

10

 

 

بنابراین درموتور زیمنس 1LA02864SE41 تعداد قطب 4 و در نتیجه سرعت سنکرون موتور 1500 خواهد بود .

فاکتورهای مهم در کارآیی و عملکرد الکتروموتورها

فاکتورهای موثر در کارآیی و عملکرد موتور :

1- ولتاژ : افزیش یا کاهش ولتاژ از یک حد مجاز تاثیرات مخربی بر روی موتورها می گذارد . با توجه به جدول زیر داریم که :

الف – کاهش 10% ولتاژ از مقدار نامی ، موجب 20% کاهش گشتاور شده و آن سبب می شود که موتور استارت بشود و یا اینکه به دور نامی برسد .

ب- افزایش 10% ولتاژ از مقدار نامی ، باعث افزایش 20% گشتاور استارت را و این می تواند سبب آسیب دیدگی موتور بدلایل ( افزایش جریان در بار نامی و حرارت ) شود .

 

 

2- فرکانس : تغییرات در فرکانس می تواند بر روی مشخصات موتور همچون گشتاور و سرعت تاثیر گذار باشد . اگر به جدول زیر توجه فرمائید ، بعنوان مثال ملاحظه خواهید نمود که افزایش 5% در فرکانس باعث افزایش 5% در سرعت در بار نامی و کاهش 10% در گشتاور استارت باشد .

3- ارتفاع : عامل موثر دیگر ارتفاع است . موتورها معمولا" برای ارتفاع تا 1100 متر( 3300 feet ) از سطح تراز دریا درنظر گرفته می شوند . در ارتفاع بالاتر از این مقدار هوا رقیقتر بوده و حرارت براحتی انتقال نمی یابد .بنابراین فاکتور ارتفاع بر روی توان موتور تاثیر می گدارد. مثلا" در استاندارد NEMA یک موتور 50HP در ارتفاع 6600 فیت دارای توان 47HPخواهد بود . ( فاکتور ارتفاع 0.94 است . ) جدول زیر تاثیرات این فاکتور را در دمای محیط 40 درجه سانتیگراد نشان می دهد :

 

تشخیص مشخصات موتور ها از روی پلاک آنها

توضیحات

شماره

علامت کارخانه ، شرکت سازنده

1

تیپ موتور ، مدل

2

نوع جریان ( مستقیم = G ) ، ( تکفاز = E ) ، ( سه فاز = D )

3

نوع جریان مانند GEN ( ژنراتور ) ، MOT ( موتور )

4

شماره سریال

5

نوع اتصال استاتور مانند : ستاره - مثلث

6

ولتاژ نامی 220 / 380 ولت

7

جریان نامی بر حسب آمپر

8

قدرت نامی معمولا" برحسب( KW )

9

نوع مورد استفاده ( S )

10

ضریب توان : کسینوس فی

11

جهت گردش : R ,L

12

دور نامی : RPM

13

فرکانس نامی : 50Hz یا 60 Hz

14

در ماشینهای مستقیم ( تحریک ) LFR - ERR ( روتور ) در ماشینهای آسنکرون

15

نوع اتصال سیم پیچ روتور

16

تحریک نامی و نیز ولتاژ روتور در حالت سکون

17

جریان تحریک نامی - جریان روتور

18

کلاس عایق مانند : Y , A , B , C , …

19

نوع حفاظت IP

20

وزن به تن در ماشینهای بیشتر از 1 تن و یا به کیلوگرم

21

توضیحات دیگر مانند وسیله خنک کننده : IC

22

 

انواع اتصال در موتورهای سه فاز

موتورهای سه فاز در شبکه سه فاز به دو روش به سه فاز شبکه وصل می شود : ستاره یا مثلث . البته تمام موتورهایی که قرار است به روش مثلث به سه فاز وصل شود از روش 2 ضربی ( ستاره - مثلث ) استفاده می کنند.

اگر بر روی تخته کلم دقیق شویم آرایش سر و ته سیم پیچی هر فاز را درست مقابل هم نمی بینیم.مثلا در فاز R سیم پیچی با ابتدای u و انتهای x مشخص شده است ولی بر روی تخته کلم درست مقابل هم قرار ندارند به آرایش تخته کلم در شکل زیر دقیق شوید:

 

علت جابجا قراردادن نام سر وته سیم پیچهای هر فاز در تخته برای راحتی در ایجاد نوع اتصال ستاره یا مثلث برای وصل به شبکه است.

موتوری که پیچیده شد چگونه باید به سه فاز مدار وصل شود؟؟

اگر تمام ته های هر سیم پیچی در هر فاز را به هم بسته و سر های هر یک را بطور مجزا به سه فاز RST وصل کنیم این اتصال از نوع ستاره است .در شکل زیر نمونه اتصال ستاره را برایتان رسم کرده ام.

توصیه می کنم تمام موتورهایی که در کارگاه برای کار تمرینی انجام می دهید حتما با این اتصال به شبکه وصل کنید . علت این کاررا در ادامه توضیح خواهم داد.

ناگفته نماند نامگذاری فازها امری قراردادی است و فرقی نمی کند که شما سر هایuvw را به هر یک از فازهای RST به شکل متفاوت وصل نمایید.

اما اگر از شش سیمی که بعد از سیم پیچی از موتور بیرون می آید را به شکل زیر به هم بسته و از سه اتصال بوجود آمده هر یک را به سه فاز شبکه وصل کنیم این اتصال از نوع مثلث است. یعنی u ورودی یا سر سیم پیچی در فاز R را با z انتهای سیم پیچ در فاز T به هم وصل کرده در ادامه v به عنوان ورودی فاز S را با x انتهای سیم پیچ در فاز اول به هم اتصال داده و نهایتا w به عنوان ورودی برای فاز T را با y همان انتهای سیم پیچی در فاز S را به هم می بندیم . قطعا سه اتصال خواهیم داشت که اگر این سه بطور مجزا به سه فاز شبکه وصل شود این اتصال از نوع مثلث است.

در شکل زیر نمونه ای از اتصال مثلث را رسم کرده ام که ملاحظه می کنید:

فرق بین اتصال ستاره و مثلث چیست ؟

ابتدا سعی می کنیم آنچه که در مورد هر یک از اتصالها اتفاق می افتد را به صورت تشریحی و کالبد شکافانه برایتان نشان دهیم. در اتصال ستاره آنچه که اتفاق می افتد به قرار زیر است:

انتهای تمام سیم پیچی که به هم وصل شده اند را در وسط قرار داده ام xyz , و آن را با علامت پیکان مشخص نموده ام.هر یک از سیم پیچ ها که با اختلاف 120 درجه نسبت به هم در استاتور قرار گرفته اند نیز به همان اختلاف بصورت شمایی رسم شده اند. آنچه ازاین شکل برداشت می شود این است که این مجموعه از روابط برداری تبعیت کرده و ما به حقایق جالبی خواهیم رسید قبل از این که محاسبات برداری را انجام دهم لازم است به آگاهی شما برسانم که در موتورهای سه فاز ما یک جریان و ولتاز خطی داریم که مربوط به شدت جریان و ولتاز ورودی(بین دو فاز) در مسیر کابل به داخل موتور است ویک ولتاژ و شدت جریان فازی هم داریم که مربوط به شدت جریان داخل سیم پیچ و ولتاژی است که در دوسر سیم پیچها وجود دارد.

در اتصال ستاره می توان طبق شکل vp1 و vp2 را به عنوان دو برداری در نظر گرفت که اگر برآیند آنها را حساب کنیم برابر با برداری شودکه با نام VL از فاز R در حال ورود به موتور می باشد.برای محاسبه برآیند این دو بردارکافی است به موازات هر یک از بردارهای VP1 و VP2 خطی رسم کنیم تا در نقطه ای یکدیگر را قطع کنند. برآیند این دو بردار از نقطه تقاطع اول شروع شده تا به محل تقاطع اخیر ختم می شود . و طبق قانون بردار خواهیم داشت:

VL2 = VP12 + VP22 +2 VP1VP2 . COS 120

چون مقدار VP1 و VP2 با هم برابر است می توان نوشت :

VL2 = 3VP2 . 2. COS 120

کسینوس 120 درجه 2/1 است بنابراین رابطه به شکل زیر در می اید.

VL2 = 3VP2 . 2. 1/2 VL2 = 3VP2 VL = VP

ولتاز خطی در اتصال ستاره برابر ولتاژ فازی است و جریان خطی وفازی در این نوع اتصال باهم برابرند.به بیان ساده تر :

vL = vp

IL = Ip

اما در مورد اتصال مثلث شکل به صورتی در می آید که می بینید.

در اتصال مثلث ولتاز خط با ولتاژ فازی با هم برابر ولی جریان خطی رادیکال سه برابر جریان فازی است.

VL = VP IL = √3 . IP

همانطور که می بینید جریان خطی یا همان جریانی که از مسیر کابلها وارد موتور می شود در اتصال مثلث رادیکال سه برابر جریان فازی ( مقدار جریانی که داخل سیم پیچ در حال عبور است) می باشد . یعنی اگر درموتوری در داخل سیم پیچ مقدار IP برابر با 3 آمپر باشد و اتصال از نوع مثلث باشد جریان خطی آن برابر با :

IL = √3 . IP IL = √3 . 3 IL = 5.19 A

خواهد داشت که این مقدار آمپر در لحظه راه اندازی برای موتور در نقاط حساس مثل اتصالها - کنتاکتها - ترمینالها خطرناک بوده باعث خرابی و سوختن قطعات می گردد بنابراین در راه اندازی موتورهایی که می توانند به شکل مثلث کار کنند راه اندازی به شکل دو ضرب انجام می شود. یعنی از کلید های ستاره مثلث استفاده شده ابتدا در لحظه راه اندازی کلید برروی اتصال ستاره است و بعد از را ه افتادن موتور کلید را به محل اتصال مثلث می چرخانیم.

با توجه به موارد ذکر شده در بالا چند نکته را همیشه به خاطر داشته باشید:

1- اگر موتور شما تمرینی است و آن را در کارگاه پیچیده اید حتما با اتصال ستاره راه اندازی کنید و مطلقا از مثلث استفاده نکنید.

2- اگر موتوری سیم پیچی آن برای کارکرد در حالت مثلث است ابتدا با ستاره بعد به حالت مثلث در آورید.

3- موتوری که برروی پلاکش در بخش ولت نوشته شده باشدV220 /380 این موتور در شبکه برق ایران فقط با ستاره کار می کند . ولی اگر برروی پلاک موتوری در بخش ولت عدد V380 /660 قید شده باشد این موتور برای اینکه توان واقعی خود را داشته باشد باید بااتصال مثلث کار کند اما گفتم که ابتدا با ستاره راه اندازی شده بعد به حالت مثلث درمی آید. هر چند که می توان از این نوع موتورها به شکل ستاره هم استفاده نمود.

4- اگر بخواهیم از یک سوم قدرت موتوری که سیم پیچی آن براساس اتصال مثلث است استفاده کنیم می توانیم از اتصال ستاره استفاده نماییم.

5- همانطور که جریان و ولتاز خطی و فازی داریم قطعا توان فازی و خطی هم خواهیم داشت معمولا توان اولیه یا دریافتی موتورها از رابطه ای استفاده می شود که در آن از ولتاز و جریان خطی استفاده می شود.که در حالت ستاره به شکل زیر است:

P = √3 . VL . IL . COS φ

این توان رابا نام توان اکتیو می شناسیم واگر بخواهیم همین توان را براساس ولتاز و جریان فازی بیان کنیم رابطه به شکل زیر در می آید.ِ

P = 3Vp . IP . COS φ

سیم پیچی

معمولا در الکتروموتور ها تعداد شیارها را با علامت z نشان می دهند.به خوبی می دانیم که فضایی که کلافهای سیم پیچی در آن قرار دارد را استاتور گویند.وبخش گردنده را روتور می نامند. الکتروموتوری که در بخش استاتور دارای ۲۴ شیار باشد آنرا به شکل 24=z نشان می دهند.

نکته مهم بعدی این است که موتور های ۳ فاز که برق تغذیه کننده موتور از سه فاز R-S- T می باشدبرای هر یک از فاز ها به صورت مساوی تعداد شیارهایی اختصاص می یابد که هریک از فازها به اندازه ۱۲۰ درجه الکتریکی با هم فاصله دارند.

٬٬٬ همانطور که قبلا مشاهده کردید بین فازهای ورودی در موتورهای ۳فاز ۱۲۰ درجه الکتریکی فاصله وجود دارد .برای درک موضوع توضیح زیر لازم است.در موتورهای القایی سه فاز بین روتور واستاتور هیچگونه ارتباط الکتریکی وجود ندارد و آنچه که باعث گردش روتور می شود اگر بخواهیم بطور کاملا خلاصه بگوییم باید عرض کنیم اثر شار مغناطیسی که توسط سیم پیچها به کمک جریان ورودی در استاتور ایجاد می شود عامل گردش خواهد بود. جریان ورودی در کلافهای استاتور ایجاد فضای مغناطیسی میکند .

در واقع هر یک از شیار ها به یک قطب آهنربایی تبدیل می شود. حال اگر محیط دوار استاتور را ۳۶۰ درجه منظور کنیم اگر این مقدار بر تعداد شیارهای استاتور مثلا ۲۴ تایی تقسیم کنیم و آن را به تعداد جفت قطبهای فضای داخلی استاتور ضرب کنیم زاویه الکتریکی هر شیار قابل محاسبه خواهد بود. αez .

تعداد قطبهای آهنربایی که در داخل استاتور ایجاد می شود با نوع سیم پیچی ونوع کلاف زنی قابل تغییر وکنترل خواهد بود. مثلا طوری کلافها را جا بزنیم که موتور به شکل ۴ یا ۲ یا ۶ یا ۸ قطب (N یا S ) کار کند. تعداد زوج قطبها را با P نمایش می دهند. α ez=360/24*P

برای سیم پیچی موتورهای سه فاز یا تک فاز همان طور که قبلا گفته شد باید یک سری اطلاعات فنی را درباره موتوری که در دسترس داریم بدست آوریم.این اطلاعات معمولا از روی پلاک موتور بدست می آید .

(البته هر چند که می توان از راهکارهای دیگری به این مهم رسید. مثلا اگر موتوری خالی بدون سیم و نیز بدون پلاک برای ما بیاورند محاسبه نوع سیم پیچی این موتورها نیز امکان پذیر است. در این موتور ها با در نظر گرفتن و نیز یادداشت اطلا عات فیزیکی موتور مثل قطر داخلی استاتور Ds و ارتفاع یوغ Hc و طول هسته Ls ونیز محاسبه مقدار شار مغناطیسی Bmو مقدار اندکسیون یوغ Bc و لحاظ ضریب K می توان مقدا رتوان ثانویه را بدست آورد.)

اندازه گیری یوغ استاتورو نقش ان

یکی از عوامل مهم در سیم پیچی موتور ها اندازه گیری مقدار یوغ استاتور است . اگراز محیط بیرونی استاتور را که به پوسته یا همان بدنه مماس شده تا ابتدای لبه قاعده شیارها رابصورت شعاعی اندازه بزنیم این مقدار برابر با اندازه یوغ خواهد بود. یادمان باشد که مقدار بر اساس میلی متر می باشد. این مقدار را با Hs نشان می دهیم.نمایی از یوغ در بریده ای ازاستاتورکه با پیکان دو سر مشخص شده را می بینید.

در ادامه باید اندازه قطر داخلی استاتور را نیز برداریم. اگر استاتور را دایره فرض کنیم اندازه گیری قطر آن بطور عملی کاری بسیار ساده خواهد بود. این مقدار هم براساس میلی متر و به شکل Ds نمایش داده می شود.

حال به این نکته توجه کنیدکه اندازه یوغ فضایی است که شار مغناطیسی در ان جریان یافته و در فضای استاتور مدار مغناطیسی کامل می شود.کمی به این رابطه توجه کنید.

Hc = Bm . Ds / Bc .P

در این رابطه Hc همان ارتفاع یوغ است که شما اندازه زده اید. D هم مقدار قطر داخلی است که این کمیت راهم پیدا کرده اید. Bm مقدار شاری است که توسط استاتور به هنگام کار در فضای داخلی آن ایجاد می شود البته مقدار ماکزیمم آن بر اساس مقدار D در نموداری رسم شده است . در این نمودار مقدار ماکزیمم شار برای قطبهای مختلف 2 - 4 و 6 قطب را نشان می دهد. Bc مقدار شار داخل یوغ است که معمولا برابر با 5/1در نظر می گیرند. p تعداد جفت قطبهای موتور است.مثلا موتوری که 4 قطب است مقدار p برابر با 2 خواهد شد.

نکته بسیار مهم در این رابطه این است که تعداد قطبهای موتور با ارتفاع یوغ رابطه عکس دارد. یعنی هرچه ارتفاع بزرگتر باشدP کوچکتر و موتور دارای سرعت بیشتری است.

نمودار مربوط به شار مغناطیسی Bm را می توانید در ادامه ملاحظه کنید.

در این نمودار منحنی قرمز رنگ برای موتورهای 2 قطب یعنی 2p=2 منحنی مشکی رنگ برای موتورهای 6 قطب و منحنی آبی رنگ هم برای موتورهای 4 قطب در نظر گرفته شده است.

حال شما با کمیتهای که در دست دارید Hs ( مقدار ارتفاع یوغ) Ds ( مقدار قطر داخلی استاتور ) و Bc ( ماکزیمم شار داخل یوغ که حدود 5/1 است) و نیز مقدار شار واقعی یعنی Bm( از نمودار مربوطه) می توانید تعداد قطبهای موتوررا محاسبه نمایید.

مثال:استاتور موتوری داریم که دارای یوغ 30 میلی متری واندازه قطر 110 میلی متر می باشد.اگر مقدار اندکسیون داخل یوغ را 1.5 فرض کنیم تعداد قطبهای این موتور را طبق جدول و رابطه یوغ حساب کنید؟

Ds=110 Hc=30 Bc=1.5

با توجه به داده هابه جدول داده شده نگاه می کنیم منحنی که بیشترین شار را برای این قطر نشان می دهد را انتخاب می کنیم.منحنی آبی رنک بیشترین مقدار را نشان میدهد. از روی عدد 110 برروی محور افقی خط عمودی رسم می کنیم .قطعا در جایی منحنی افقی را قطع خواهد کرد.از نقطه بدست آمده عمودی به سمت محور عمودی منحنی رسم مینماییم.عددی که بدست می اید حدود88/. می باشد.حال طبق رابطهHc = Bm . Ds / Bc .P مقدار p بدست می اید.

p=Bm . Ds / Hc . Bc p=0.88 . 110 / 1.5 . 30 p=2 2p = 4

موتور چهار قطبی است

اما ما مبنا را بر این قرار داده ایم که موتور حال حاضر ما دارای پلاک بوده وقرار است مشخصات آنرا بدست آوریم. گزینه های روی پلاک را (مواردی که کاربردی تر هستند ) را توضیح می دهیم.

بحث پلاک خوانی

1- MARK : در این بخش نشانه یا آرم کارخانه تولید کننده البته در بالای پلاک وبا اندازه ای بزرگتر از سایر گزینه ها درج می شود. اهمیت این گزینه زمانی مهم جلوه می کند که لازم است درباره اعتبار کارخانه تولید کننده بدانیم . برخی تولید کننده ها ی الکتروموتور از اعتبار فوق العاده ای در زمینه تولید موتور های مرغوب برخوردارند . معمولا در این بخش نام کارخانه هم درج می شود.

2- TYPE : در این بخش بطور معمول موتور را از جهت کارکرد در برق AC یا برق DC معرفی می کند.هر چند که در برخی موتور ها این گزینه شامل کدها و اعدادی می شود که نماینگرمشخصات فیزیکی موتورخواهد بود.

3- FRAM : در این قسمت اعدادی قید می شود که آنها توسط انجمهای ملی تولید کننده قابل شناسایی است که بیشتر شامل قالبهای اندازه 42 -46 و56 می باشد.

4- Hp : در مفابل آن عددی قید می شود که نماینگر مقدار توان خروجی موتور می باشد. این توان بر اساس اسب بخار است و هر اسب بخار هم حدود 736 وات می باشد.

5- Ph : چند فاز بودن موتور را عنوان می کند برای موتور های سه فاز عدد 3 و برای موتور های تک فاز عدد 1 قید می گردد. ( البته ناگفته نماند که می توان با راهکارهایی بسیار ساده از موتور سه فاز به جای موتور تک فاز هم استفاده نمود . )

6- RPM : مخفف ROUNT PER MINUTE ( یعنی دور در دقیقه) می باشد. این عدد مقدا رسرعت روتور را به ما می دهد. قطعا مقدار سرعت روتور از مقدار سرعت سنکرون در فضای استاتور کمتر است .البته این کاهش هم چندان زیاد نیست . من معمولا با دیدن این عدد به مقدار سرعت استاتور می رسم و براحتی تعداد قطبهای موتور را حساب می کنم .کافیست شما مقادیر سرعت سنکرون را در فرکانس برق 50 هرتز بدانید

سرعت سنکرون اگر به مقدار 3000 دور در دقیقه باشد این موتور در فضای استاتور خود ایجاد 2قطب متفاوت N و S نموده است بنابر این اگر تعداد قطبها را با P2 نشان دهیم برای این سرعت در این موتور 2P=2 خواهد بود. خوب اگر موتور به شما دادند که برروی پلاکش عدد 2850 دور بوده این سرعت روتور است که به دلیل لغزش از مقدار دور سنکرون کاهش یافته است.

از مقدار لغزش صرف نظر کرده و از رابطه Ns=60 * f/p تعداد قطبهای موتور را حساب می کنیم. در این رابطه Ns همان سرعت سنکرون است که الان مقدار آنرا داریم (3000) و f مقدار فرکانس برق شهری است که در ایران 50 هرتز است.( لازم به یاد آوری است در این رابطه علامت * نشانه ضربدر و علامت / نشانه تقسیم می باشد.) با جایگزینی اعدادی که داریم مقدارP بدست خواهد آمد.P=1 و 2Pبرابر با 2 خواهد شد. پس وجود RPM بر روی پلاک خیلی از مسایل بربوط به سیم پیجی را برای ما حل خواهد کرد.

7- HZ یا SYCLES : در این بخش مقدار فرکانس برق شهری که موتور بر اساس آن طراحی شده است را نشان می دهد. برای موتورهای شبکه ایران این عدد 50 است.

8- HOUSING : در این بخش به ما گفته می شود که موتور باید در محیط بسته یا رو باز کار کند .

9- Volt : از جمله مهمترین بخش در امر پلاک خوانی توجه به این گزینه می باشد . در واقع اگر کسی از اعداد روی پلاک در این بخش اطلاعاتی نداشته باشد باید با اطمینان گفت که چیزی از موتور نمی داند

معمولا در موتور های سه فاز در بخش ولت دو عدد قید می شود که به وسیله خط کسری یا ممیز از هم جدا می شوند مثلV220/380 و یا V115/230 . این اعداد بیانگر این موضوع هستند که این موتور در چه شبکه با چه ولتازی کار می کند . برق شبکه معمولا در ولتاز های 115 - 230- 440 و 660 می باشد.

از دو عددی که بر روی پلاک ارائه شده عدد کمتر همان ولتازی است که باید از شبکه به سر هر فاز از سیم پیچی موتور داده شود. اگر ولتاز شبکه از مقدار راهنمایی شده بیشتر بود الزاما این موتور باید بصورت اتصال ستاره کار کند . و اگر موضوع بر عکس بود یعنی ولتاز شبکه از عدد اول ارائه شده کمتر بود می توان موتور را هم مثلث و هم ستاره به شبکه وصل نمود. ( به خاطر داشته باشید که اتصال های ستاره و مثلث بحث های بسیار ساده و راحتی هستند.

در شبکه برق ایران که ولتاز400/230 داریم موتوری که بر روی پلاکش اعداد 660/380 قید شده باشد این موتور برای این که بتواند توان واقعی خود را داشته باشد باید بااتصال مثلث به شبکه وصل شود و اگر بخواهیم از 3/1 قدرت آن استفاده نماییم باید از اتصال ستاره استفاده کنیم.

10- Amps : مقدار جریانی که موتور زیر باردر ولتازوجریان اسمی خواهد کشید دراین بخش قید میگردد.

 

الکتروموتور وعیب یابی آن

موتور های الکتریکی (آسنکرون-یونیورسال-قطب چاکدار ) عیب یابی ورفع عیب موتور های مذکور .
موتور ها مهمترین اجزایی هستند که در لوازم برقی گردنده بکار می روند.موتور ها انرژی الکتریکی را به انرژی مکانیکی تبدیل می کنند. الکتروموتور ها را می توان به سه دسته کلی تقسیم کرد:
1- موتور های آسنکرون
2 - موتور های یونیورسال
3- موتور با قطب چاکدار
1- موتور های آسنکرون:
که با برق متناوب کار می کنند از دو قسمت روتور واستاتور ساخته شده اند.با روشن شدن موتور سیم پیچ های درون شیار های استاتور یک میدان مغناطیسی دوار بوجود می آورند که این میدان برروتور که قسمت گردنده موتور ودارای محور انتقال حرکت می باشد نیز اثر گذاشته ودر آن خاصیت مغناطیسی بوجود می آید .به هر حال با بوجود آمدن قطب های مغناطیسی هم نام وغیرهم نام عمل جذب ودفع انجام شده که باعث حرکت چرخشی روتور می گردد.برای راه اندازی موتور ها از حالت سکون روش های مختلفی بکار می برند که مهمترین آن ها عبارتند از:
الف- آسنکرون با راه انداز غیر خازنی (کلاجی ) در این موتور به غیر از سیم پیچی های اصلی یک سری سیم پیچ کمکی نیز قرار دارد که میدان مغناطیسی دیگری با فاصله زمانی با میدان مغناطیسی اصلی بوجود می آورد.که باعث چرخش پرقدرت تر موتور می گردد. پس از این که سرعت موتور به 75 درصد سرعت اسمی رسید کلاج که تحت تاثیر نیروی گریز از مرکز کار می کند به عنوان یک کلید عمل کرده وسیم پیچ کمکی را از مدار خارج می کند.
ب - آسنکرون با راه انداز خازن موقت - این موتور ها دارای علامت اختصاری CSMمی باشند ودارای یک خازن الکترولیتی با ظرفیت حدود 200 الی 500 میکرو فاراد است که باسیم پیچ کمکی بطور سری بسته شده وهر دوی آنها باسیم پیچ اصلی موازی بسته می شوند. خازن وسیم پیچ کمکی یک اختلاف فاز ودو میدان مغناطیسی بوجود می آورد که باعث چرخش موتور می گردد. در این موتور نیز کلید گریز از مرکز سیم پیچ کمکی را از مدار خارج می کند.
ج - آسنکرون با راه انداز خازن موقت وخازن دایم.(با علامت اختصاری TCM) - یکی از خازن ها پس از راه اندازی از مدار خارج شده وخازن دیگر در حالتی که با سیم پیچ کمکی سری می باشد در مدار باقی می ماند.
د - آسنکرون با راه انداز خازن دایمی ( PSCM) در این موتور ها که دارای قدرت کم تری نسبت به موتور های قبلی هستند از یک خازن که با سیم پیچ کمکی سری بسته شده است استفاده شده و کلید گریز از مرکز ندارند بنابر این خازن به همراه سیم پیچ کمکی همیشه در مدار باقی است.

شناسایی سیم پیچ های اصلی وکمکی :

1- سیم پیچ های اصلی در زیر شیار ها و سیم پیچ کمکی در رو قرار دارند.
2- سطح مقطع سیم های کمکی همیشه از سیم های اصلی کمتر است.
3- سیم پیچ کمکی دارای مقاومت بیشتری (اهم بیشتر ) نسبت به سیم پیچ اصلی است وضمنا" خازن با سیم پیچ کمکی سری شده است.
عیب یابی موتور های آسنکرون - معیوب شدن موتور ها یا مربوط به قطعات برقی مثل سیم پیچ ها وخازن است یا مربوط به قطعات مکانیکی مثل بلبرینگ و بوشن ها .

عیب یابی قطعات برقی :

عیب1- موتور اصلا"روشن نشده و جریانی از مدار عبور نمی کند.
علت1 -جایی از مدار قطع است.
رفع عیب1- با آوامتر تمام مدار شامل پریز،دوشاخه ،سیم های رابط،کلیدها واتصالات در تخته کلم موتور را بر رسی وعیب مربوطه را بر طرف می نماییم.
عیب2- موتور اصلا"روشن نشده وجریانی از مدار عبور نمی کند.
علت2 -سوختن فیوز.
رفع عیب2-ابتدا علت سوختن فیوز که مربوط به اتصالی می باشد را بررسی نموده پس از آن به تعویض فیوز می پر دازیم.
عیب3-موتور پس از روشن شدن خیلی زود داغ می شود.
علت3-موتور نیم سوز است.
رفع عیب3- در هر کدام از سیم پیچ های کمکی واصلی میتواند اتصال حلقه ویا اتصال کلاف به کلاف بوجود آمده باشد.بنابر این مسیر جریان الکتریکی کوتاه شده در نتیجه میدان مغناطیسی مناسب برای گردش بوجود نمی آید وباعث داغی موتور میشود.موتور های نیم سوز جریان بیشتری نسبت به موتور های سالم مشابه خود دریافت می کنند. برای رفع عیب در صورتی که محل اتصالی مشخص باشد وبتوان به نحوی آن را عایق نمود اقدام کرده ودر غیر این صورت موتور باید دو باره سیم پیچی شود.
عیب4- موتور پس از روشن شدن خیلی زود داغ می شود.
علت4- زیاد بودن بار موتور.
رفع عیب 4- هر موتوری   دارای توان مکانیکی مشخص است در صورتی که بیش از توان مربوطه از موتور نیرویی خواسته شود جریان بیشتری از سیم ها عبور می کند که با سطح مقطع وتعداد دور آن ها همخوانی ندارد وباعث گرما در موتور و آسیب دیدن آن خواهد شد .برای رفع عیب باید بار موتور را کم نموده واز کار مداوم آن خود داری کرد.
عیب5- موتور پس از روشن شدن خیلی زود داغ می شود وزیر بار می خوابد.
علت 5- عمل نکردن کلید گریز از مرکز .
رفع عیب 5 - علاوه بر جریان در یافتی توسط سیم پیچ اصلی ،سیم پیچ کمکی نیزچون از مدار خارج نمی شود جریان دریافت می کند .برای اطمینان از صحت عمل کرد کلید گریز از مرکز باید به صدای کنتاکت آن در حالت دور گرفتن موتور وهمچنین از دور افتادن آن گوش کرد .برای رفع عیب باید کلید سرویس ویا تعویض شود.
عیب 6- با روشن کردن موتور صدای زیادی شنیده می شود ولی به گردش در نمی آید.
علت 6- خرابی کلید گریز از مرکز .
رفع عیب 6- درصورتی که کنتاکت های کلید در حالتی که موتور خاموش بوده وصل نشده باشد.درزمان شروع بکار ،سیم پیچ راه انداز در مدار قرار نگرفته وطبیعتا"موتور بگردش نمی افتد.برای رفع عیب کلید را با آوامتر امتحان ودر صورت معیوب بودن تعویض می نماییم.
عیب 7- با روشن شدن موتور صدای زیادی شنیده می شود ولی به گردش در نمی آید.
علت 7 - قطعی سیم پیچ اصلی یا کمکی .
رفع عیب 7 - به کمک آوامتر هر دو مدار را امتحان ودر صورت مشخص بودن محل پارگی ،آن را تعمیر می نماییم.
عیب 8 - با روشن شدن موتور صدای زیادی شنیده می شود ولی به گردش در نمی آید.
علت 8 - نیم سوز بودن یا سوختگی موتور .
رفع عیب 8 - موتور سریعا"داغ شده وجریان زیادی می کشد همچنین بوی سوختگی ویا دود از مشخصه های آن است.رفع عیب سیم پیچی مجدد است.
عیب 9 - با روشن کردن موتور صدای زیادی شنیده می شود ولی به گردش در نمی آید.
علت 9 - خرابی خازن.
رفع عیب 9 - خازن ها به منظور راه اندازی موتور بکار رفته اند خازن را مطابق با مطالبی که در مورد عیب یابی خازن ها گفتیم آزمایش نموده در صورت نیاز آن را تعویض می کنیم.
عیب 10 - با روشن کردن موتور فیوز عمل کرده مدار قطع می شود.
علت 10 - اتصال کوتاه در مدار اصلی موتور .
رفع عیب 10 - دوشاخه ،سیم های رابط وجعبه اتصالات موتور را بررسی کرده در صورت پیدا کردن محل اتصالی آن را مرتفع می نماییم.
عیب 11 - با روشن کردن موتور فیوز عمل کرده مدار قطع می شود.
علت 11 - سوختگی کامل موتور
رفع عیب 11 - با مشاهده استاتور وسیم پیچ های مربوطه عیب حاصل تایید گردیده وبرای رفع آن باید موتور سیم پیچی گردد.
عیب 12 - با روشن کردن موتور فیوز عمل کرده مدار قطع می شود.
علت 12 - اتصال کوتاه در خازن
رفع عیب 12 - اگر با جدا کردن خازن از مدار و به برق زدن موتور فیوز دیگر عمل نکرد عیب از خازن است وباید آن را تعویض نمود.

عیب یابی قطعات مکانیکی.

عیب 1 - محور موتور چه در حالت روشن وچه در حالت خاموشی به سختی حرکت می کند.
علت 1 -بطور کلی خرابی بلبرینگ ها ویاطاقان های دو سر محور موتور .
رفع عیب 1 - خرابی بلبرینگ ها شامل الف - ترک برداشتن حلقه های بلبرینگ،ترک بر داشتن ساچمه ها و غلطک ها .ب - بوجود آمدن حفره وشیار در سطح داخلی حلقه ها که علت آن وجود ذرات سخت بین ساچمه وحلقه می باشد.ج - گریپاژ (عدم چرخش ساچمه ها ) که ناشی از کثیفی و سخت شدن گریس بلبرینگ می باشد. د - فرسودگی وپوسیدگی - که به علت جازدن نادرست بلبرینگ ونفوذ رطوبت وعدم گریس کاری مناسب بوجود می آید. برای تشخیس عیوب گفته شده بلبرینگ را از نظر ظاهری مشاهده ولقی بین حلقه وساچمه را امتحان می کنیم . همچنین با چرخش بلبرینگ اگر صدای غیر عادی شنیده شود دلیل برخرابی آن می باشد که باید تعویض گردد.
عیب 2 - گاهی اوقات محور موتور با صدای زیادی می چرخد.
علت 2 - چرخش حلقه بیرونی بلبرینگ در جای خود.
رفع عیب 2 - جازدن نادرست بلبرینگ وعدم گریس کاری می تواند باعث لقی بلبرینگ در جای خود شود . رفع عیب-تعویض بلبرینگ در صورت معیوب بودن بوش زدن وتراش کاری جای آن یا تعویض دری موتور.
2-موتور های یونیورسال
این موتور ها که هم با جریان متناوب وهم با جریان مستقیم کار می کنند از دو قسمت اصلی تشکیل شده اند:
الف:قطب ها (بالشتک ها )
ب - آرمیچر
در این موتور ها میدان مغناطیسی قطب ها بر خلاف موتور های آسنکرون دوار نیست وسیم پیچ آرمیچر که قسمت گردنده موتور است با سیم پیچ قطب ها سری بسته شده است . پس از عبور جریان از مدار فوق خطوط قوای مغناطیسی قطب ها با خطوط قوای آرمیچر عکس العمل نشان داده وباعث گردش موتور می شود .سرعت این موتور ها بالا بوده وخیلی سریع به سرعت نهایی می رسند. از این موتور ها در اکثر لوازم برقی خانگی مثل چرخ گوشت ،آب میوه گیری ،هم زن ،آسیاب و... استفاده می شود. برای برقراری ارتباط قطب ها با آرمیچر که گردان می باشد از قطعه ای بنام کلکتور استفاده می شود . کلکتور از تیغه های مسی کنار هم تشکیل شده است که به شکل استوانه روی محور قرار دارد . تیغه ازهمدیگر واز محور آرمیچر بوسیله میکا عایق شده اند وسیم پیچ های داخل شیار آرمیچر به وسیله پیچک ها به یکدیگر وصل می شوند. دو قطعه ذغال به همراه فنر پشت آن ها ارتباط قطب ها با کلکتور را میسر می سازد.

عیب یابی موتور های یونیور سال :

عیب 1 - موتور روشن نمی شود.
علت 1 - نبودن برق.
رفع عیب 1 - پریز ،دوشاخه وسیم رابط را با آوامتر آزمایش نموده ورفع عیب می کنیم.
عیب 2 - موتور روشن نمی شود.
علت 2 - کوتاه شدن ذغال ها.
رفع عیب 2 - چون ذغال ها جزیی از مدار سری موتور می باشد.با کوتاه شدن آن ها ممکن است مدار قطع گردد وموتور روشن نشود با تعویض ذغال رفع عیب می شود در صورت نبودن ذغال در اندازه مورد نظر می توان از ذغال بزرگ تر استفاده کرده وبا سوهان آن را به اندازه دلخواه در آورد.
عیب 3 - موتور روشن نمی شود.
علت 3 - خرابی فنر ذغال ها
رفع عیب 3 - به منظور درگیر بودن همیشگی ذغال با کلکتور از قطعه ای فنر در پشت ذغال استفاده می شود گاهی در اثر رطوبت ویا کار زیاد خاصیت خود را از دست داده ومدار قطع می گردد. باتعویض فنر رفع عیب می شود

روشهای مختلف راه اندازی موتورهای آسنکرون

موتورهای آسنکرون با توجه به قدرت و ولتاژ آن به طرق مختلف راه اندازی میشوند و با توجه به اینکه موتور در لحظه شروع به کار جریان زیادی میکشد و این جریان زیاد علاوه بر اینکه به خود موتور صدمه میزند به مصرف کننده های دیگری که از این خط تغذیه می کنند لطمه زده و کار آنها را مختل می سازد.
بنابراین برای کم کردن جریان شروع به کار موتور باید چاره ای اندیشید؟؟
معمولاً به روشهای زیر راه اندازی میشود در نتیجه جریان راه اندازی‌ کم میشود :
1. به طور مستقیم
2. توسط کلید یا مدار ستاره – مثلث
3. توسط کمپانساتور
4. راه اندازی بوسیله اضافه کردن مقاومت در مدار روتور
5. راه اندازی بوسیله داخل کردن مقاومت در مدار استاتور
1- راه اندازی موتور به طور مستقیم : برای‌ موتورهایی که بزرگ نیستند و‌ آمپر زیادی از شبکه نمی کشند بوسیله یک کلید سه قطبی به شبکه متصل میشوند .
2-راه اندازی ستاره – مثلث : ابتدا ولتاژ اولیه را که بر هر فاز متصل میشود ،‌ را کم مى کنیم سپس وقتی که موتور به دور نرمال خود رسید ولتاژی که به هر فاز می رسد را زیاد می کنیم .
بنابراین در لحظه اول کلید به حالت ستاره بوده یعنی ولتاژ دو سر هر فاز به u/√3 تقلیل می یابد در نتیجه موتور با توان 3/1 توان نامی خود کار می کند .
استعمال کلید روی انواع موتورها با روتور قفسه ای یا روتور سیم پیچی امکان پذیر است . ولی در موتورهایی که با بار زیاد کار می کنند از کلید برای راه اندازی استفاده نمی شود . چون گشتاور مقاوم بار زیاد است .
3-راه اندازی توسط کمپانساتور : این وسیله راه اندازی که اتوترانسفورماتور کاهنده است بین موتور و شبکه قرار می گیرد . این طریق راه اندازی به دلیل اینکه جریان شروع به کار و گشتاور شروع به کار هر دو به یک نسبت پایین می آیند خیلی خوب است . ولی چون هزینه آن گراناست فقط در موتورهایی که قدرت زیاد دارند استفاده می شوند.
4-راه اندازی موتورهای قفسه ای بوسیله قرار دادن مقاومت سر راه استاتور : برای جلوگیری از عبور جریان زیاد در موقع راه اندازی موتور میتوان مقاومت هایی به طور سری سر راه سیم پیچی هایموتور قرار دارد . و به تدریج که موتور دور می گیرد دسته مقاومتهای راه انداز را به طرف چپ حرکت داده در این صورت کم کم مقاومتها از سر راه مدار خارج میشود.
این طریق راه اندازی به دلیل تلفات انرژی در مقاومتها زیاد و نیروی کشش در لحظه شروع به کار کم ، استعمال کمی دارد.
5-راه اندازی موتورهای آسنکرون با روتور سیم پیچی با قرار دادن مقاومت سر راه روتور : تمام مقاومتهای راه انداز را سر راه سیم پیچی روتور قرار داد . بدین وسیله مقاومت مدار سیم پیچی روتور را به حداکثر مقدار خود میرسانند و سپس استاتور را به شبکه برق وصل می کنند . مقاومت روئستای روتور به تدریج از مدار خارج میشود .

پیدا کردن سرسیم های موتور آسنکرون UVW-XYZ

آیا می دانید اگر موتور آسنکرونی سه فازی داشته باشیم و 6 سر سیم ، که سر سیم های آن مشخص نیست ، چه باید کرد ؟؟
اگر این سر سیم ها اشتباه وصل شود در عملکرد موتور چه تغییری حاصل می شود ؟

تعیین آرایش کلافها در شیار :

موتورهای سه فاز از سه سیم پیچ تشکیل شده که هر کدام از این سیم پیچها 3/1 شیارهای استاتور را اشغال می کند. این سیم پیچها به فاز اول (R) ، فاز دوم (S) ، فاز سوم (T) شناسایی می شوند.
§ سیم پیچی که از فاز Rتغذیه می کند شروع سیم پیچی را (U ) و انتهای آنرا با ( X )
§ سیم پیچی که از فاز S تغذیه می کند شروع سیم پیچی را (V ) و انتهای آنرا با ( Y )
§ سیم پیچی که از فاز T تغذیه می کند شروع سیم پیچی را (W ) و انتهای آنرا با ( Z )

برای یافتن سر سیم ها‌ :

ابتدا باید دو سر هر کلاف را پیدا کنید از مولتی متر یا هر روش دیگری که می شناسید .( یک سر مولتی متر را به یک سر سیم گرفته ، سر دیگر مولتی متر را با 5 سر سیم باقی مانده امتحان می کنید . هر کدام که راه داد ، آن یک کلاف سیم پیچ است . )

اشتباه در سرسیم ها :

همانطور که می دانیم موتور سه فاز از سه سیم پیچ تشکیل شده است.که هر کدام از سیم پیچها 3/1 شیارهای استاتور را اشغال کرده وباعث تشکیل قطب در موتور می شود و قطب ها حرکت دورانی به روتورمی دهد . حال اگر سر سیمی تغییر کند در موتور ایجاد قطب نمی شود و موتور حرکت نمی کند و می تواند باعث سوختن موتور شود .
قبل از انجام کار اگر بار روی موتور قرار دارد بار را از روی موتور بردارید. ( تسمه یا ....)

تنظیم دور موتورهای آسنکرون

با دانستن رابطهNr=[60f/p](1-S) دور موتور آسنکرون را میتوان به طریقه های زیر تنظیم نمود :
1. تغییر فرکانس ولتاژ شبکه
2. تغییر قطبها
3. داخل کردن مقاومت در مدار روتور
4. تغییر ولتاژ موتور
1-تغییر دور بوسیله تغییر فرکانس : با تغییر فرکانس سرعت سنکرون تغییر میکند و دور موتور تغییر میکند . میتوان برای تغییر فرکانس از یک مولد یا مبدل فرکانس استفاده نمود . و یک یا چند موتور القایی که در شرایط مشابهی کار می کنند بوسیله آنها تغذیه شوند . مانند موتور ماشینهای کارخانه فولاد سازی و موتورهای محرک ماشین نساجی
2-تغییر دور بوسیله تغییر عده جفت قطبها : این تغییر را در موتورهای آسنکرونی است که بتوان با سیم پیچهای‌ آن تغییر قطب داد که این حالت در موتورهای دو سرعته ( دالاندر ) دیده می شود که میتوان با کلید ( دالاندر ) دور موتور را تغییر داد .
3-تغییر دور با داخل کردن مقاومت در مدار روتور : در موتورهای آسنکرون با روتور سیم پیچر شده با تغییر مقاوت مدار روتور میتوان سرعت گردش روتور را تنظیم کرد ولی چون راندمان موتور بر اثر تغییر دور تغییر میکند در نتیجه کاربرد این روش خیلی کم است
4-تغییر دور با تغییر ولتاژ : از این روش در موتورهای کوچک مانند پنکه و ... استفاده میشود .

موتور آسنکرون با روتور سیم پیچی شده (روتور رینگی)

روتور سیم پیچی شده : به جای میله ، استاتور را می توان سیم پیچی سه فاز کرد و اینسیم پیچها را به صورت ستاره وصل می کنیم . درروی محور این موتور سه حلقه که نسبت به هم و نسبت به محور عایق هستند (رینگ) قرار دارد . سه سر سیم پیچی روتور به این سه حلقه متصل می شود و به وسیله جاروبکهائی که روی حلقه ها تکیه دارند به یک مقاومت سه فاز ستاره متصل میشود.

مزایای موتور آسنکرون با روتور سیم پیچی شده :

§ در موقع شروع به کار گشتاور قوی دارد .
§ بر خلاف موتور آسنکرون با روتور قفسه ای که جریان شروع به کار آنها کم است جریان شروع به کار کمی‌ دارد .
§ سرعت آن در مقابل بارهای مختلف تقریباً ثابت است .
§ تعداد دور آن تا حدی قابل تنظیم است .( با کم و زیاد کردن رئوستا راه انداز )
§ میتوان تا حدی بار آن را زیاد کرد .

معایب موتورهای آسنکرون با روتور سیم پیچی شده :

§ در مقابل تغییر ولتاژ حساسیت دارد .
§ ضریب قدرت آن در موقعیکه بار به حد نرمال نیست کم می باشد .
§ ضریب قدرت آنها نسبت به ضریب قدرت موتور آسنکرون با روتور قفسه ای کمتر است.

موارد استفاده و کاربرد موتورهای آسنکرونبا روتور سیم پیچی شده :

از موتور آسنکرون با روتور سیم پیچی شده :برای قدرت های خیلی زیاد مخصوصاً اگر با فشار قوی باشد استفاده می شود و یا اینکه در موقع شروع به کار ، موتور احتیاج به گشتاور زیاد داشته باشد مانند به راه انداختن ترن یا جرثقیلها و غیره

راه اندازی موتورهای سنکرون در حالت بارداری

ساختمان : استاتور موتورهای سنکرون از نظر ساختمان دقیقاً مشابه استاتور موتورهای القایی است سیم پیچهای سه فاز آن در داخل شیارهای هسته آهنی استاتور تعبیه شده که وظیفه آنها ایجاد میدان دوار در هسته استاتور است.
روتور این موتور به صورت یکپارچه یا از ورقهای مغناطیسی ساخته می شود و بر روی آن یک سیم پیچی جریان مستقیم به نام سیم پیچ تحریک نصب می شود.
جریان تغذیه سیم پیچی تحریک روتور، از طریق دو حلقه که بر روی محور روتور نصب شده به وسیله جاروبکها تأمین می شود و روتور این موتورها عملا بصورت یک مغناطیس الکتریکی (چرخ قطب) رفتار می کند که تعداد قطبهای روتور به اندازه قطبهای سیم پیچی استاتور خواهد بود.
طرز کار: هنگام وصل استاتور به شبکه سه فاز ، یک میدان دوار که سرعت آن متناسب با فرکانس شبکه و تعداد قطبهای استاتور است در آن بوجود می آید و سطح روتور را جاروب می کند.قطبهای روتور از طریق قطبهای غیر همنام استاتور جذب و لحظه ای بعد مجدداً این قطبها به وسیله قطبهای همنام استاتور دفع خواهند شد. پس میانگین گشتاور صفر و روتور حرکت نمی کند قطبهای روتور به دلیل سنگینی و اینرسی موجود در آن نمی توانند به سرعت همراه میدان دوار استاتور بچرخند. پس باید با یک وسیله کمکی (راه انداز) ابتدا سرعت روتور را به نزدیکی سرعت میدان دوار استاتور رساند تا روتور بتواند همراه میدان دوار چرخش کند.
سؤال: گشتاور راه اندازی این موتورها چقدر است؟

روشهای راه اندازی موتورهای سنکرون:

 

برای راه اندازی موتورهای سنکرون سه روش اساسی می توان به کار برد.
1-کاهش سرعت میدان مغناطیسی استاتور: تا حدی که روتور بتواند طی نیم سیکل چرخش میدان مغناطیسی شتاب بگیرد و با آن قفل شود . این کار را می توان با کاهش فرکانس منبع تغذیه انجام داد.
2-استفاده از یک گرداننده اولیه: که سرعت موتور را تا حد سرعت سنکرون بالا میبرد و با طی مراحل موازی کردن ماشین مثل ژنراتور روی خط آورده شود. پس از این مراحل خاموش کردن با جدا کردن گرداننده اولیه ماشین سنکرون را تبدیل به موتور خواهد کرد.
3- استفاده از سیم پیچ های میرا کننده که در انتهای قطبین روتور نصب می شود.
در موتورهای سنکرون سرعت حرکت روتور در هر حال برابر با سرعت میدان دوار استاتور خواهد بود و افزایش بار فقط عقب ماندگی روتور نسبت به میدان را موجب می شود.
اختلاف فاز این دو میدان Bs وBR همان زاویه گشتاور است که از0 تا90 تغییر می کند. البته اگر افزایش بار بیش حد باشد. موتور از حالت سنکرونیزم خارج خواهد شد که اصطلاحا آن را ناپایدار می نامیم ضمنا هنگام کار با سرعت سنکرون با تغییرات جریان تحریک امتداد جریان آرمیچر و ضریب قدرت ماشین از حالت پس فازی به اهمی و پیش فازی قابل کنترل خواهد بود که از این خاصیت جهت اصلاح ضریب قدرت شبکه استفاده می شود که به موتورهای سنکرون پر تحرک (کاردر حالت پیش فازی) خازنهای سنکرون نیز گفته می شود . (موتورهای سنکرون در حالت کار پیش فازی کم تحریک هستند.) مدار معادل تکفاز موتور سنکرون بصورت زیر می باشد.

تکنولوژی ساخت موتور های پله

آیا تا کنون به واژه motion (حرکت) فکر کرده اید. امروزه اهمیت جابه جایی در کلیه زمینه ها احساس می شود. حرکت و سرعت تعریف جدیدی را از جهان امروز ارائه می دهد.
کنترل حرکتی در حوزه الکترونیک به معنی کنترل صحیح حرکت یک شی بر اساس فاکتور هایی مانند سرعت - مسافت- بارگیری و یا ترکیبی از کلیه موارد می باشد. امروزه سیستم های کنترل حرکتی بسیار زیادی مو جود است که می توان از stteper motors- linear stepper motors- Dc brush-... نام برد. در اینجا به توضیحات مختصری از تکنولوژی step motor ها اکتفا می کنیم.
در تئوری از stepper motor به عنوان یک شگفتی در ساده سازی یاد می شود. اساسا هر stepper یک مو تور با یک میدان مغناطیسی می باشد که خود به صورت الکتریکی رو شن شده و باعث چرخش دایرهای آرماتور آهنربا می شود.
قسمت کنترل کننده حرکت از یک کابل میکرو پروسسور جهت تولید پالس های پله ای و ایجاد سیگنال های مسیر حرکت تشکیل شده است. و هر indexer بایستی قادر به انجام دستورات اجرایی باشد.
motion driver و یا همان آمپلی فایر دستورات سیگنال های رسیده از منبع را به قدرت مورد نیاز برای چرخش پره های مو تور می شود. امروزه تعداد زیادی driver با قدرت های مختلف جریان و ولتاژ در ساختار تکنولوژی یافت می شود.
هر stepper motor یک وسیله مغناطیسی است که هر پالس دیجیتال را به یک چرخش مکانیکی مانند چرخش پره تبدیل می کند. از مزیت های آن به هزینه پایین- امنیت بالا - ساده بودن و قابل استفاده بودن در هر محیط می توان اشاره کرد.

انواع stepper motor ها :

variable reluctance
permanent magnet
hybrid
چگونگی طراحی هر driver تعیین کننده نوع خروجی هر stepper motor است که دارای سه نوع full- half- microstep می باشد.
Full step:
استاندارد طراحی دارای 50 چرخندا دندانه دار و تو لید کننده 20 پالس پله ای برای چرخش مکانیکی هر عنصر است.
Half step:
به معنی آن است که مو تور می تواند دارای 400 حرکت پله ای در هر دوره باشد. در این سیستم یک چرخنده خود دارای انرژی ست که باعث چرخش تناوبی دو چرخنده دیگر می شود. half stepping یک راه حل عملی تر در صنعت است.
microstep:
یک تکنولوژی نسبتا جدید است که جریان چرخش هر چرخنده را کنترل می کند. این کنترل در سطحی انجام می شود که تقسیم کننده ای فرئی دور تری در بین قطبها قرار گیرد.

موتور استارترها

همانطوری که می دانید ، راه اندازی موتورهای القایی در صنعت از اهمیت ویژه ای برخوردار است. به خصوص این که امروزه استفاده از راه اندازهای الکترونیکی مانند راه اندازهای نرم - کنترلر های سرعت بسیار مرسوم شده است و لازم است علاقه مندان و کارشناسان این رشته روشهای کنترل و راه اندازی موتورها را به شیوه های کلاسیک به دیده فراموشی بسپارند و به فراگیری روشهای بروز بپردازند.
یکی از روشهای راه اندازی موتورهای القایی راه اندازهای نرم می باشد که از طریق آنها موتور ها از طریق کنترل ولتاژ-فرکانس در یک زمان مشخص بتدریج از سرعت صفر به سرعت نامی می رسند که این روش امروزه کاملا جا افتاده است.
راه اندازهای نرم تنها در هنگام راه اندازی بکار می روند و معمولا پس از راه اندازی توسط یک کنتاکتور بای پس از مدار خارج می گردند. این راه اندازها می توانند به سیستم از کار اندازی نرم نیز مجهز باشند که کاربرد های ویژه ای دارد. ضمن این که عموما این نوع راه اندازها به ترمز الکترونیکی از طریق تزریق جریان مستقیم نیز مجهز می باشند.
سازندگان این نوع راه اندازها معمولا حفاظت های مورد نیاز برای موتور را نیز در راه اندازها تعبیه می کنند که از این طریق حجم راه انداز محدود می گردد. ضمن این که با استفاده از این گونه راه اندازها نیاز به در نظر گرفتن کنتاکتور اصلی نیست . حفاظت هایی که معمولا در راه اندازهای نرم پیش بینی می گردد بشرح زیر است :
- حفاظت در مقابل اضافه بار
- حفاظت در مقابل توالی معکوس فازها و دو فاز شدن
- حفاظت در مقابل افزایش حرارت سیم پیچ های موتور که از طریق سنسورهای حرارتی انجام می گردد.
- حفاظت در مقابل کاهش ولتاژ
و موارد دیگر که بسته به سازنده راه انداز می تواند تغییر کند.
نکته مهم اینجاست که هنگام بسته شدن کنتاکتور بای پس حفاظت های تعبیه شده در راه انداز همچنان فعال می باشد چون مسیر بای پس تنها تایرستورها را بای پس می کند.
جهت بستن کنتاکتور بای پس بعد از راه اندازی موتور عموما از یک کنتاکت راه انداز استفاده می گردد که بعد از رمپ راه اندازی به صورت خودکار فعال می گردد. لازم به ذکر است که برخی از راه اندازهای نرم دارای سیستم بای پس داخلی هستند که دیگر نیاز به در نظر گرفتن کنتاکتور بای پس نیست.
با توجه به این که تایرستورهای بکار رفته در راه اندازهای نرم حرارت تولید می کنند اینطور استنباط می گردد که در تابلو برق های دارای راه اندازهای نرم لازم است از فن استفاده گردد. ولی با توجه به کار راه انداز تنها در مرحله استارت ، حرارت تولید شده تنها به مرحله راه اندازی محدود می گردد و بنابر این در راه اندازهای دارای سیستم بای پس تنها تعبیه شکاف های عبور هوا متناسب با درجه حفاظتی تابلو توصیه می گردد. ضمن این که این گونه راه اندازها عموما مجهز به هیت سینک و فن هستند.
اکثر راه اندازهای نرم مجهز به پورت های اطلاعاتی مانند مودباس- پروفی باس و .... جهت تبادل اطلاعات می باشند که از این طریق می توان از کلیه اطلاعات داخل راه انداز مطلع گردید به این طریق کنترل این راه انداز ها توسط سیستم هایی مانند DCS بسیار ساده می باشد.

موتور های خطی

یک موتور خطی در واقع یک موتور الکتریکی است که استاتورش غیر استوانه شده است تا به جای اینکه یک گشتاور چرخشی تولید کند، یک نیروی خطی در راستای طول استاتور ایجاد کند.
طرح‌های بسیاری برای موتورهای خطی ارائه شده است که می‌توان آنها را به دو دسته تقسیم کرد: موتورهای خطی شتاب بالا و شتاب پایین. موتورهای شتاب پایین برای قطارهای مگلیو و دیگر کاربردهای حمل و نقلی روی زمین مناسب هستند. موتورهای شتاب بالا معمولاً خیلی کوتاه هستند و برای شتاب دادن به جسمی تا سرعت بسیار زیاد و سپس رها کردن آن به کار می‌روند. این موتورها معمولاً برای مطالعات برخورد سرعت بالا به عنوان تسلیحات نظامی یا به عنوان راه‌اندازنده جرمی برای پیشرانه فضاپیما به کار می‌رود. موتور خطی‌ای که برای شتاب دادن به یون ها یا ذره‌های زیر اتمی به کار می‌رود، یک شتاب دهنده ذره نامیده می‌شود. با نزدیک شدن ذره‌ها به سرعت نور، طراحی موتورها معمولاً متفاوت می‌شود و این ذره‌ها نیز عموماً داری بار الکتریکی هستند.

شتاب پایین

ایده موتور خطی اولین بار توسط پرفسور اریک لیتویت از کالج امپریال در لندن مطرح شد. در طرح وی و در اکثر طرح‌های شتاب پایین، نیرو توسط یک میدان مغناطیسی خطی سیار که بر روی هادی‌ها موجود در میدان عمل می‌کند، ایجاد خواهد شد. در هر هادی‌ چه یک حلقه، چه یک سیم‌پیچ یا یک تکه از فلز تخت که در این میدان قرار گیرد جریان‌های گردابی القا شده وجود خواهد داشت و بنابراین یک میدان مغناطیسی مخالف را ایجاد خواهد کرد. دو میدان مغناطیسی همدیگر را دفع خواهند کرد و بنابراین جسم هادی را از استاتور دور خواهند کرد و آن را در طول جهت میدان مغناطیسی سیار حمل خواهند کرد.
به علت این ویژگی‌ها، موتور خطی اغلب در پیشرانه قطار مگلیو به کار می‌رود هر چند که می‌توان صرف نظر از پرواز مغناطیسی از آنها استفاده کرد، مانند استفاده در فن‌آوری انتقال پیشرفته و سریع نور که در سیستم ترن آسمانی ونکوور ، Scarborough RT تورنتو، ترن هوایی فرودگاه JGK نیویورک و Putra RTL کووالالامپور به کار می‌رود. از این فن‌آوری با تغییراتی در برخی از قطار‌های بازی نیز استفاده می‌شود.
موتورهای خطی عمودی نیز برای مکانیسم‌های بالابر در معدن های عمیق پیشنهاد شده است.

شتاب بالا

موتورهای خطی شتاب بالا برای کاربرهای متعددی پیشنهاد شده‌اند. به علت اینکه مهمات ضد زرهی کنونی بایستی گلوله‌های کوچکی با انرژی جنبشی بسیار بالا باشند یعنی دقیقاً آنچه که این موتورها فراهم می‌کنند، از آنها به عنوان تسلیحات استفاده شده‌ است. این موتورها همچنین برای استفاده در پیشرانه فضا پیماها به کار گرفته می‌شود. در چنین شرایطی به این موتورها راه‌اندازهای جرمی گفته می‌شود. ساده‌ترین روش استفاده از راه‌انداز جرمی برای پیشرانه فضا پیما، ساخت یک راه‌انداز جرمی بزرگ است که بتواند محموله را تا سرعت گریز شتاب دهد.
طراحی موتورهای شتاب بالا به دلایل متعددی مشکل است. آنها مقادیر بزرگ انرژی را در مدت زمان کوتاه نیاز دارند. که برای هر پرتاب در فضا نیاز به 300GJ در مدت زمان کمتر از یک ثانیه دارد. ژنراتور ها  ی الکتریکی معمولی برای چنین نوع از باری طراحی نشده‌اند اما روش‌های ذخیره انرژی الکتریکی کوتاه مدت را می‌توان مورد استفاده قرار داد. خازن ‌ها پر حجم و گران هستند اما می‌توانند به سرعت مقادیر بزرگ انرژی را فراهم کنند. ژنراتور ها  ی هم قطب را می‌توان برای تبدیل سریع انرژی جنبشی یک چرخ طیار به انرژی الکتریکی به کار برد. موتورهای خطی شتاب بالا نیازمند میدان‌های مغناطیسی بسیار قوی‌ای نیز هستند، در واقع میدان‌های مغناطیسی اغلب آنقدر قوی اند که اجازه استفاده از ابر رساناها را نمی‌دهند. اما با طراحی دقیق می‌توان این مشکل را حل کرد.
دو طرح متفاوت پایه‌ای از موتور‌های خطی شتاب بالا ابداع شده است: تفنگ‌های ریلی و تفنگ های کویلی.

موتورهای فرمان یار DC بدون جاروبک

یک سرو موتور، یا یک موتورDC یا AC یا یک موتور DC بدون جاروبک می‌باشد که ترکیب شده با یک دستگاه تعیین محل موقعیت (کدبردار دیجیتالی). سروو موتورها در ربات‌ها کاربرد خیلی زیادی دارند. این موتورها کوچک ولی نسبت به اندازه‌شان بسیار پرقدرت می‌باشند. موتور DC بدون جاروبک یک موتورDC معمولی نیست، اما یک ماشین سنکرون آهنربای دائم است. این نام بردن واقعی است زیرا مشخصات عملیاتی آن همانند همان موتورهای DC شنت با جریان میدان ثابت است.

موتورهای پله‌ای

نوع خاصی از موتور سنکرون که برای چرخیدن محور به اندازه یک زاویه خاص برای همه پالس‌های الکتریکی که از واحد کنترل کننده خودش دریافت می‌کند، در نظر گرفته شده است. نوعی از پله‌ها 5/7 یا 15 درجه در هر پالس محور را می‌چرخانند. این است یک موتور که می‌تواند با دو دستورالعمل بچرخد، حرکت کند در زاویه‌‌هایی با فواصل کوچک و دقیق،گشتاور موجود در سرعت صفر را تحمل می‌کند و با مدار دیجیتالی کنترل می‌شود. حرکت می‌کند در زاویه‌های دقیق با فواصل کوچک معلوم به عنوان گام، در پاسخ به استفاده از پالس‌های دیجیتالی به مدار راه‌انداز الکتریکی. به طور کلی، این قبیل موتورها با گام‌هایی در هر دور ساخته می‌شوند. گام‌های موتورها دو قطبی هستند که نیاز به دو منبع قدرت دارند با تک قطبی هستند که تنها نیاز به یک منبع قدرت دارند.

موتورهای یونیورسال

موتورهای یونیورسال موتورهای چرخشی هستند شبیه به موتورهای DC اما طراحی شده‌اند برای ولتاژ DC با AC تکفاز. سیم‌پیچی‌های استاتور و رتور این موتورها به صورت سری بین کموتاتور رتور متصل شده‌اند. بنابراین موتورهای یونیورسال همچنین معروف هستند به موتورهای AC سری یا یک موتور با کموتاتور AC. موتورهای یونیورسال می‌توانند کنترل شوند با راه‌انداز زاویه فاز و یا راه‌اندازهای برشگر.
موتورهای یونیورسال یک مشخصه گشتاور- سرعت با افت زیاد از یک موتور DC را دارد.

نمونه کاربرد در جاروبرقی، دریل و وسایل آشپزخانه
موتور القایی تک فاز

چندین نوع موتور القایی تک فازکه امروزه مورد استفاده قرار می‌گیرد، وجود دارد. به طور اساسی آنها یکسان هستند مگر برای وسایل راه‌اندازی. آنها طبقه‌بندی می‌شوند به : موتور‌های القایی با انشقاق فاز، موتور با استارت خازنی.

معیارهای انتخاب موتور

1-دردست بودن منبع تغذیه
2- شرط یا عوامل راه اندازی
3-مشخصه‌های راه اندازی (گشتاور – سرعت) مناسب
4-سرعت عملکرد کار مطلوب
5- قابلیت کارکردن به جلو و عقب
6- مشخصه‌هی شتاب (وابسته به بار)
7- بازده مناسب در بار اسمی
8-توانایی تحمل اضافه بار
9-اطمینان الکتریکی و حرارتی
10-قابلیت نگهداری و عمر مفید
11-ظاهر مکانیکی مناسب (اندازه، وزن،‌ میزان صدا، محیط اطراف)
12- پیچیدگی کنترل و هزینه

چند نوع موتور القایی
موتور القایی AC فاز شکسته

1. موتور القایی با استارت خازنی
2. موتورهای AC القایی با خازن دائمی اسپلیت
3. موتورهای AC القایی استارت با خازن/ کارکرد با خازن

موتور القایی AC فاز شکسته

موتور فاز شکسته همچنین به عنوان Induction start/Induction run (استارت القایی/کارکرد القایی)هم شناخته می شود که دو پیچه دارد.پیچه استارت از سیم نازکتر و تعداد دور کمتر نسبت به پیچه اصلی برای بوجود آوردن مقاومت بیشتر ساخته شده است.همچنین میدان پیچه استارت در زاویه ای غیر از آنچه که پیچه اصلی دارد قرار می گیرد که سبب آغاز چرخش موتور می شود.پیچه اصلی که از سیم ضخیم تری ساخته شده است موتور را همیشه درحالت چرخش باقی نگه می دارد.
تورک آغازین کم است مثلا 100 تا 175 درصد تورک ارزیابی شده.موتور برای استارت جریانی زیاد طلب می کند.تقریبا 700 تا 1000 درصد جریان ارزیابی شده.تورک بیشینه تولید شده نیز در محدوده 250 تا 350 درصد از تورک براوردشده می باشد.
کاربریهای خوب برای موتورهای فاز شکسته شامل سمباده (آسیاب) های کوچک , دمنده ها و فنهای کوچک و دیگر دستگاههایی با نیاز به تورک آغازین کم با و نیاز به قدرت 1/20 تا 1/3 اسب بخار می باشد.از استفاده از این موتورها در کاربریهایی که به دوره های خاموش و روشن و گشتاور زیاد نیازدارند خود داری نمایید.

موتور القایی با استارت خازنی

این نوع , موتور اصلاح شده فاز شکسته با خازنی سری با آن برای بهبود استارت است.همانند موتور معمولی فاز شکسته این نوع موتور یک سوئیچ گریز از مرکز داشته که هنگامی که موتور به 75 درصد سرعت ارزیابی شده می رسد , پیچه استارت را از مدار خارج می نماید.از آنجا که خازن با مدار استارت موازی است , گشتاور استارت بیشتری تولید می کند , معمولا در حدود 200 تا 400 درصد گشتاور ارزیابی شده.و جریان استارت معمولا بین 450 تا 575 درصد جریان ارزیابی شده است.که بسیار کمتر از موتور فاز شکسته و بعلت سیم ضخیمتر در مدار استارت است.
نوع اصلاح شده ای از موتو با استارت خازنی ، موتور با استارت مقاومتی است.در این نوع موتور خازن استارت با یک مقاومت جایگزین شده است.موتور استارت مقاومتی در کاربریهایی مورد استفاده قرار می گیرد که میزان گشتاور استارتینگی کمتر از مقداری که موتور استارت خازنی تولید می کند لازم است.صرف نظر از هزینه این موتور امتیازات عمده ای نسبت به موتور استارت خازنی ندارد.
این موتورها در انواع مختلف کاربریهای پولی و تسمه ای مانند تسمه نقاله های کوچک , پمپها و دمنده های بزرگ به خوبی بسیاری از خود گردانها و کاربریهای چرخ دنده ای استفاده می شوند.

موتورهای AC القایی با خازن دائمی اسپلیت

این موتور (PSC) نوعی خازن دائما متصل به صورت سری به پیچه استارت دارد.این کار سبب آن میشود که پیچه استارت تازمانی که موتور به سرعت چرخش خود برسد بصورت پیچه ای کمکی عمل کند.از آنجا که خازن عملکرد اصلی , باید برای استفاده مداوم طراحی شده باشد , نمیتواند توان استارتی معادل یک موتور استارت خازنی ایجاد نماید.گشتاور استارت یک موتور (PSC) معمولا کم و در حدود 30 تا 150 درصد گشتاور ارزیابی شده است.موتورهای (PSC) جریان استارتی پایین , معمولا در کمتر از 200 درصد جریان برآورد شده دارند که آنها را برای کاربریهایی با سرعتهای دارای چرخه های خاموش روشن بالا بسیار مناسب می سازد.
موتورهای PSC امتیازات فراوانی دارند.طراحی موتور براحتی برای استفاده با کنترل کننده های سرعت میتواند اصلاح شود.همچنین می توانند برای بازدهی بهینه و ضریب توان بالا در فشار برآورد شده طراحی شوند.آنها به عنوان قابل اطمینان ترین موتور تک فاز مطرح میشوند.مخصوصا به این خاطر که به سوئیچ گریز از مرکز نیازی ندارند.
موتورهای PSC بسته به طراحیشان کاربری بسیار متنوعی دارند که شامل فنها , دمنده ها با نیاز به گشتاور استارت کم و چرخه های کاری غیر دائمی مانند تنظیم دستگاهها (طرز کارها) , عملگر درگاهها و بازکننده های درب گاراژها میشود.

موتورهای AC القایی استارت با خازن/ کارکرد با خازن

این موتور , همانند موتور با استارت خازن , خازنی از نوع استارتی در حالت سری با پیچه کمکی برای گشتاور زیاد استارت دارد.همچنین مانند یک موتور PSC خازنی از نوع کارکرد که درکنار خازن استارت در حالت سری با پیچه کمکی است که بعد از شروع به کار موتور از مدار خارج می شود.این حالت سبب بوجود آمدن گشتاوری در حد اضافی می شود.
این نوع موتور می تواند ... و بازده بیشتر طراحی شود.این موتور بخاطر خازنهای کارکرد و استارت و سوئیچ گریز از مرکز آن پرهزینه است.
این موتور می تواند در بسیاری از کاربریهایی که از هرموتور تک فاز دیگری انتظار میرود استفاده شود.این کاربریها شامل ماشینهای مرتبط با چوب , کمپرسورهای هوا , پمپ های   آب فشار قوی , پمپ های   تخلیه و دیگر کاربردهای نیازمند گشتاورهای بالا در حد 1 تا 10 اسب بخار می شوند.

  • ShahBaz